A degree theory for compact perturbations of properC1Fredholm mappings of index 0.
Abstract and Applied Analysis, Tome 2005 (2005) no. 7, p. 707-731.
Voir la notice de l'article dans European Digital Mathematics Library
@article{10_1155_AAA_2005_707, author = {Rabier Patrick J. and Salter Mary F.}, title = {A degree theory for compact perturbations of {properC1Fredholm} mappings of index 0.}, journal = {Abstract and Applied Analysis}, pages = {707-731}, publisher = {mathdoc}, volume = {2005}, number = {7}, year = {2005}, doi = {10.1155/AAA.2005.707}, zbl = {1117.47049}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1155/AAA.2005.707/} }
TY - JOUR AU - Rabier Patrick J. AU - Salter Mary F. TI - A degree theory for compact perturbations of properC1Fredholm mappings of index 0. JO - Abstract and Applied Analysis PY - 2005 SP - 707 EP - 731 VL - 2005 IS - 7 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1155/AAA.2005.707/ DO - 10.1155/AAA.2005.707 LA - en ID - 10_1155_AAA_2005_707 ER -
%0 Journal Article %A Rabier Patrick J. %A Salter Mary F. %T A degree theory for compact perturbations of properC1Fredholm mappings of index 0. %J Abstract and Applied Analysis %D 2005 %P 707-731 %V 2005 %N 7 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1155/AAA.2005.707/ %R 10.1155/AAA.2005.707 %G en %F 10_1155_AAA_2005_707
Rabier Patrick J.; Salter Mary F. A degree theory for compact perturbations of properC1Fredholm mappings of index 0.. Abstract and Applied Analysis, Tome 2005 (2005) no. 7, p. 707-731. doi : 10.1155/AAA.2005.707. https://geodesic-test.mathdoc.fr/articles/10.1155/AAA.2005.707/
Cité par Sources :