Cemracs project: A composite finite volume scheme for the Euler equations with source term on unstructured meshes
ESAIM. Proceedings, Tome 77 (2024), pp. 123-144.

Voir la notice de l'article provenant de la source EDP Sciences

In this work we focus on an adaptation of the method described in [1] in order to deal with source term in the 2D Euler equations. This method extends classical 1D solvers (such as VFFC, Roe, Rusanov) to the two-dimensional case on unstructured meshes. The resulting schemes are said to be composite as they can be written as a convex combination of a purely node-based scheme and a purely edge-based scheme. We combine this extension with the ideas developed by Alouges, Ghidaglia and Tajchman in an unpublished work [2] – focused mainly on the 1D case – and we propose two attempts at discretizing the source term of the Euler equations in order to better preserve stationary solutions. We compare these discretizations with the “usual” centered discretization on several numerical examples.
DOI : 10.1051/proc/202477123

Mohammed Boujoudar 1 ; Emmanuel Franck 2 ; Philippe Hoch 3 ; Clément Lasuen 3 ; Yoan Le Hénaff 4 ; Paul Paragot 5

1 Mohammed VI Polytechnic University, Morocco
2 Université de Strasbourg, CNRS, Inria, IRMA, F-67000 Strasbourg, France
3 CEA, DAM, DIF, 91297, Arpajon Cedex, France
4 Université de Rennes, IRMAR UMR 6625, Centre INRIA de l’Université de Rennes (MINGuS), France
5 Laboratoire J.A. Dieudonné, Université Côte d’Azur, France
@article{EP_2024_77_a6,
     author = {Mohammed Boujoudar and Emmanuel Franck and Philippe Hoch and Cl\'ement Lasuen and Yoan Le H\'enaff and Paul Paragot},
     title = {Cemracs project: {A} composite finite volume scheme for the {Euler} equations with source term on unstructured meshes},
     journal = {ESAIM. Proceedings},
     pages = {123--144},
     publisher = {mathdoc},
     volume = {77},
     year = {2024},
     doi = {10.1051/proc/202477123},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/proc/202477123/}
}
TY  - JOUR
AU  - Mohammed Boujoudar
AU  - Emmanuel Franck
AU  - Philippe Hoch
AU  - Clément Lasuen
AU  - Yoan Le Hénaff
AU  - Paul Paragot
TI  - Cemracs project: A composite finite volume scheme for the Euler equations with source term on unstructured meshes
JO  - ESAIM. Proceedings
PY  - 2024
SP  - 123
EP  - 144
VL  - 77
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/proc/202477123/
DO  - 10.1051/proc/202477123
LA  - en
ID  - EP_2024_77_a6
ER  - 
%0 Journal Article
%A Mohammed Boujoudar
%A Emmanuel Franck
%A Philippe Hoch
%A Clément Lasuen
%A Yoan Le Hénaff
%A Paul Paragot
%T Cemracs project: A composite finite volume scheme for the Euler equations with source term on unstructured meshes
%J ESAIM. Proceedings
%D 2024
%P 123-144
%V 77
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/proc/202477123/
%R 10.1051/proc/202477123
%G en
%F EP_2024_77_a6
Mohammed Boujoudar; Emmanuel Franck; Philippe Hoch; Clément Lasuen; Yoan Le Hénaff; Paul Paragot. Cemracs project: A composite finite volume scheme for the Euler equations with source term on unstructured meshes. ESAIM. Proceedings, Tome 77 (2024), pp. 123-144. doi : 10.1051/proc/202477123. https://geodesic-test.mathdoc.fr/articles/10.1051/proc/202477123/

Cité par Sources :