Mathematical analysis of an age structured epidemic model with a quarantine class
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 57.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, an age structured epidemic Susceptible-Infected-Quarantined-Recovered-Infected (SIQRI) model is proposed, where we will focus on the role of individuals that leave the R-class before being completely recovered and thus will participate again to the disease transmission. We investigate the asymptotic behavior of solutions by studying the stability of both trivial and positive equilibria. In order to see the impact of the different model parameters like the relapse rate on the qualitative behavior of our system, we firstly, give an explicit expression of the basic reproduction number R0, which is a combination of the classical basic reproduction number for the SIQR model and some other model parameters, corresponding to the individuals infected by the relapsed ones. It will be shown that, if R0 ≤ 1, the disease free equilibrium is globally asymptotically stable and becomes unstable for R0 > 1. Secondly, while R0 > 1, a suitable Lyapunov functional is constructed to prove that the unique endemic equilibrium is globally asymptotically stable on some subset Ω0.
DOI : 10.1051/mmnp/2021049

Zakya Sari 1 ; Tarik Mohammed Touaoula 1 ; Bedreddine Ainseba 2

1 Laboratoire d’Analyse Non linéaire et Mathématiques Appliquées, Département de Mathématiques, Université Aboubekr Belkaïd, Tlemcen 13000, Algérie.
2 Institut de Mathématiques de Bordeaux, IMB UMR CNRS 5251, Université de Bordeaux, 33000, Bordeaux, France.
@article{MMNP_2021_16_a57,
     author = {Zakya Sari and Tarik Mohammed Touaoula and Bedreddine Ainseba},
     title = {Mathematical analysis of an age structured epidemic model with a quarantine class},
     journal = {Mathematical modelling of natural phenomena},
     eid = {57},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021049},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021049/}
}
TY  - JOUR
AU  - Zakya Sari
AU  - Tarik Mohammed Touaoula
AU  - Bedreddine Ainseba
TI  - Mathematical analysis of an age structured epidemic model with a quarantine class
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021049/
DO  - 10.1051/mmnp/2021049
LA  - en
ID  - MMNP_2021_16_a57
ER  - 
%0 Journal Article
%A Zakya Sari
%A Tarik Mohammed Touaoula
%A Bedreddine Ainseba
%T Mathematical analysis of an age structured epidemic model with a quarantine class
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021049/
%R 10.1051/mmnp/2021049
%G en
%F MMNP_2021_16_a57
Zakya Sari; Tarik Mohammed Touaoula; Bedreddine Ainseba. Mathematical analysis of an age structured epidemic model with a quarantine class. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 57. doi : 10.1051/mmnp/2021049. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021049/

[1] B. Ainseba, Z. Feng, M. Iannelli, F.A. Milner Control strategies for TB epidemics Siam J. Appl. Math 2017 82 107

[2] B. Ainseba, M. Iannelli Optimal screening in structured SIR epidemics MMNP 2012 12 27

[3] T.T. Ashezua, N.I. Akinwande, S. Abdulrahman, R.O. Dayiwola, F. Kuta Local stability analysis of an infection age mathematical model for tuberculosis disease dynamics J. Appl. Sci. Environ. Manag 2015 665 669

[4] S. Bentout, Y. Chen, S. Djilali Global dynamics of an SEIR model with two age structures and a nonlinear incidence Acta Appl. Math 2021 1 27

[5] Soufiane S. Bentout, T.M. Touaoula Global analysis of an infection age model with a class of nonlinear incidence rates J. Math. Anal. Appl 2016 1211 1239

[6] D. Bernouilli Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir Mém. Math. Phys. Acad. Roy. Sci., Paris 1766 1 45

[7] D. Bernouilli Reflexions sur les avantages de l’inoculation Mercure de France 1760 173 190

[8] I. Boudjema, T.M. Touaoula Global stability of an infection and vaccination age-structured model with general nonlinear incidence J. Nonlinear Funct. Anal 2018 1 21

[9] F. Brauer Age infection in epidemiology models Electr. J. Differ. Equ. Conf 2005 29 37

[10] C. Castillo-Chavez and Z. Feng, Mathematical models for the disease dynamics of the tuberculosis, Fourth International Conference on Mathematical Population Dynamics (1995).

[11] A. Chekroun, M.N. Frioui, T. Kuniya, T.M. Touaoula Global stability of an age structured epidemic model with general Lyapunov functional Math. Biosci. Eng 2019 1525 1553

[12] A. Chekroun, M.N. Frioui, T. Kuniya, T.M. Touaoula Mathematical analysis of an age structured heroin-cocaine epidemic model Discr. Continu. Dyn. Syst. B 2020 444 4477

[13] Y. Chen, J. Yang, F. Zhang The global stability for an SIRS model with infection age Math. Biosci. Eng 2014 449 469

[14] O. Diekmann, J.A.P. Heesterbeek, J.Aj. Metz. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382

[15] S. Djilali, T.M. Touaoula, S.E. Miri A Heroin epidemic model: very general non linear incidence, treat-age, and global stability Acta Appl. Math. Math. Appl 2017 171 194

[16] M. Erdem, M. Safan, C. Castillo-Chavez Mathematical Analysis of an SIQR influenza model with imperfect quarantine Bull. Math. Biol 2017

[17] M.N. Frioui, T.M. Touaoula and B. Ainseba, Global dynamics of an age structured model with relapse. Discrete Contin. Dyn. Syst. Ser. B (2020) doi: 10.3934/dcdsb.2019226.

[18] M. Iannelli, Mathematical Theory of Age- Structured Population Dynamics. Giardini Editori E Stampatori In Pisa (1994).

[19] M. Iannelli and F. Milner, The basic Approach to age structured population Dynamics: Models, Methods and Numerics. Lecture Notes on Mathematical Modelling in the Life Science (2017).

[20] W.O. Kermack, A.G. Mckendrick Contributions to the mathematical theory of epidemics 1 Proc. R. Soc 1927 700 721

[21] T. Kuniya Stability Analysis of an Age structured SIR model with a reduction method to EDOs Mathematics 2018 147

[22] J.P. LaSalle, The stability of dynamical systems. Regional conference series in applied mathematics, 25. SIAM (1976).

[23] P. Magal, S. Ruan Theory and Applications of Abstract semilinear Cauchy problems Appl. Math. Sci 2018

[24] P. Magal, Mccluskey, G.F. Webb Lyapunov functional and global asymptotic stability for infection age model Appl. Anal 2010 1109 1140

[25] B. Miller Preventive therapy for tuberculosis Med. Clin. N. Am 1993 1263 1275

[26] K. Mischaikow, H. Smith, H. Thieme Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions Trans. Am. Math. Soc 1995 1669 1685

[27] A. Perasso Global stability and uniform persistence for an infection Load structured SI model with Exponential growth velocity Commun. Pure Appl. Anal 2019 15 32

[28] H.L. Smith, H.R. Thieme Dynamical Systems and population persistence Graduate Studies in Mathematics 2011

[29] H.R. Thieme, C. Castillo-Chavez How may infection age dependent infectivity affects the dynamics of HIV/AIDS Siam J. Appl. Math 1993 1447 1479

[30] G.F. Webb, Theory of Nonlinear age Dependent Population Dynamics. Marcel Dekker, New York (1985).

[31] R. Xu, X. Tian, F. Zhang Global dynamics of tuberculosis transmission model with age of infection and incomplete treatment Adv. Differ. Equ 2017 242

[32] Y. Yang, S. Ruan, D. Xia Global stability of an age structured virus Dynamics Model with Beddington–Deangelis infection function Math. Biosci. Eng 2015 859 877

[33] Z. Yui, Y. Yougguang and Z. Lu, Stability analysis of an age structured SEIRS model with time delay (2020).

Cité par Sources :