Voir la notice de l'article provenant de la source EDP Sciences
Zakya Sari 1 ; Tarik Mohammed Touaoula 1 ; Bedreddine Ainseba 2
@article{MMNP_2021_16_a57, author = {Zakya Sari and Tarik Mohammed Touaoula and Bedreddine Ainseba}, title = {Mathematical analysis of an age structured epidemic model with a quarantine class}, journal = {Mathematical modelling of natural phenomena}, eid = {57}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021049}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021049/} }
TY - JOUR AU - Zakya Sari AU - Tarik Mohammed Touaoula AU - Bedreddine Ainseba TI - Mathematical analysis of an age structured epidemic model with a quarantine class JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021049/ DO - 10.1051/mmnp/2021049 LA - en ID - MMNP_2021_16_a57 ER -
%0 Journal Article %A Zakya Sari %A Tarik Mohammed Touaoula %A Bedreddine Ainseba %T Mathematical analysis of an age structured epidemic model with a quarantine class %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021049/ %R 10.1051/mmnp/2021049 %G en %F MMNP_2021_16_a57
Zakya Sari; Tarik Mohammed Touaoula; Bedreddine Ainseba. Mathematical analysis of an age structured epidemic model with a quarantine class. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 57. doi : 10.1051/mmnp/2021049. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021049/
[1] Control strategies for TB epidemics Siam J. Appl. Math 2017 82 107
, , ,[2] Optimal screening in structured SIR epidemics MMNP 2012 12 27
,[3] Local stability analysis of an infection age mathematical model for tuberculosis disease dynamics J. Appl. Sci. Environ. Manag 2015 665 669
, , , ,[4] Global dynamics of an SEIR model with two age structures and a nonlinear incidence Acta Appl. Math 2021 1 27
, ,[5] Global analysis of an infection age model with a class of nonlinear incidence rates J. Math. Anal. Appl 2016 1211 1239
,[6] Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir Mém. Math. Phys. Acad. Roy. Sci., Paris 1766 1 45
[7] Reflexions sur les avantages de l’inoculation Mercure de France 1760 173 190
[8] Global stability of an infection and vaccination age-structured model with general nonlinear incidence J. Nonlinear Funct. Anal 2018 1 21
,[9] Age infection in epidemiology models Electr. J. Differ. Equ. Conf 2005 29 37
[10] C. Castillo-Chavez and Z. Feng, Mathematical models for the disease dynamics of the tuberculosis, Fourth International Conference on Mathematical Population Dynamics (1995).
[11] Global stability of an age structured epidemic model with general Lyapunov functional Math. Biosci. Eng 2019 1525 1553
, , ,[12] Mathematical analysis of an age structured heroin-cocaine epidemic model Discr. Continu. Dyn. Syst. B 2020 444 4477
, , ,[13] The global stability for an SIRS model with infection age Math. Biosci. Eng 2014 449 469
, ,[14] On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382
, ,[15] A Heroin epidemic model: very general non linear incidence, treat-age, and global stability Acta Appl. Math. Math. Appl 2017 171 194
, ,[16] Mathematical Analysis of an SIQR influenza model with imperfect quarantine Bull. Math. Biol 2017
, ,[17] M.N. Frioui, T.M. Touaoula and B. Ainseba, Global dynamics of an age structured model with relapse. Discrete Contin. Dyn. Syst. Ser. B (2020) doi: 10.3934/dcdsb.2019226.
[18] M. Iannelli, Mathematical Theory of Age- Structured Population Dynamics. Giardini Editori E Stampatori In Pisa (1994).
[19] M. Iannelli and F. Milner, The basic Approach to age structured population Dynamics: Models, Methods and Numerics. Lecture Notes on Mathematical Modelling in the Life Science (2017).
[20] Contributions to the mathematical theory of epidemics 1 Proc. R. Soc 1927 700 721
,[21] Stability Analysis of an Age structured SIR model with a reduction method to EDOs Mathematics 2018 147
[22] J.P. LaSalle, The stability of dynamical systems. Regional conference series in applied mathematics, 25. SIAM (1976).
[23] Theory and Applications of Abstract semilinear Cauchy problems Appl. Math. Sci 2018
,[24] Lyapunov functional and global asymptotic stability for infection age model Appl. Anal 2010 1109 1140
, ,[25] Preventive therapy for tuberculosis Med. Clin. N. Am 1993 1263 1275
[26] Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions Trans. Am. Math. Soc 1995 1669 1685
, ,[27] Global stability and uniform persistence for an infection Load structured SI model with Exponential growth velocity Commun. Pure Appl. Anal 2019 15 32
[28] Dynamical Systems and population persistence Graduate Studies in Mathematics 2011
,[29] How may infection age dependent infectivity affects the dynamics of HIV/AIDS Siam J. Appl. Math 1993 1447 1479
,[30] G.F. Webb, Theory of Nonlinear age Dependent Population Dynamics. Marcel Dekker, New York (1985).
[31] Global dynamics of tuberculosis transmission model with age of infection and incomplete treatment Adv. Differ. Equ 2017 242
, ,[32] Global stability of an age structured virus Dynamics Model with Beddington–Deangelis infection function Math. Biosci. Eng 2015 859 877
, ,[33] Z. Yui, Y. Yougguang and Z. Lu, Stability analysis of an age structured SEIRS model with time delay (2020).
Cité par Sources :