Three-dimensional phase field model for actin-based cell membrane dynamics
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 56.

Voir la notice de l'article provenant de la source EDP Sciences

The interface dynamics of a 3D cell immersed in a 3D extracellular matrix is investigated. We suggest a 3D generalization of a known 2D minimal phase field model suggested in Ziebert et al. [J. R. Soc. Interface 9 (2012) 1084–1092] for the description of keratocyte motility. Our model consists of two coupled evolution equations for the order parameter and a three-dimensional vector field describing the actin network polarization (orientation). We derive a closed evolutionary integro-differential equation governing the interface dynamics of a 3D cell. The equation includes the normal velocity of the membrane, its curvature, cell volume relaxation, and a parameter that is determined by the non-equilibrium effects in the cytoskeleton. This equation can be considered as a 3D generalization of the 2D case that was studied in Abu Hamed and Nepomnyashchy [Physica D 408 (2020)].
DOI : 10.1051/mmnp/2021048

Mohammad Abu Hamed 1, 2, 3 ; Alexander A. Nepomnyashchy 1

1 Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel.
2 Department of Mathematics, The College of Sakhnin - Academic College for Teacher Education, Sakhnin 30810, Israel.
3 Department of Mathematics, Gordon College of Education, Haifa 3570503, Israel.
@article{MMNP_2021_16_a24,
     author = {Mohammad Abu Hamed and Alexander A. Nepomnyashchy},
     title = {Three-dimensional phase field model for actin-based cell membrane dynamics},
     journal = {Mathematical modelling of natural phenomena},
     eid = {56},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021048},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021048/}
}
TY  - JOUR
AU  - Mohammad Abu Hamed
AU  - Alexander A. Nepomnyashchy
TI  - Three-dimensional phase field model for actin-based cell membrane dynamics
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021048/
DO  - 10.1051/mmnp/2021048
LA  - en
ID  - MMNP_2021_16_a24
ER  - 
%0 Journal Article
%A Mohammad Abu Hamed
%A Alexander A. Nepomnyashchy
%T Three-dimensional phase field model for actin-based cell membrane dynamics
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021048/
%R 10.1051/mmnp/2021048
%G en
%F MMNP_2021_16_a24
Mohammad Abu Hamed; Alexander A. Nepomnyashchy. Three-dimensional phase field model for actin-based cell membrane dynamics. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 56. doi : 10.1051/mmnp/2021048. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021048/

[1] P.T. Caswell, T. Zech Actin-based cell protrusion in a 3d matrix Trends Cell Biol 2018 823 834

[2] R. Folch, J. Casademunt, A. Hernandez-Machado Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. theoretical approach. Phys. Rev. E 1999 1724

[3] M. Abu Hamed, A. Nepomnyashchy Dynamics of curved fronts in systems with power-law memory Physica D 2016 1 8

[4] M. Abu Hamed, A. Nepomnyashchy A simple model of keratocyte membrane dynamics: the case of motionless living cell Physica D 2020 132465

[5] J. Happel and H. Brenner, Low Reynolds number hydrodynamics. Martinus Nijhoff Publisher (1983).

[6] K. Keren, Z. Pincus, G.M. Allen, E.L. Barnhart, G. Marriott, A. Mogilner, J.A. Theriot Mechanism of shape determination in motile cells Nature 2008 475 480

[7] M.H. Mai, B.A. Camley Hydrodynamic effects on the motility of crawling eukaryotic cells Soft Matter 2020 1349 1358

[8] P.K. Mattila, P. Lappalainen Filopodia: molecular architecture and cellular functions Nature Publishing Group 2008 446 454

[9] A. Mogilner Mathematics of cell motility: have we got its number? Math. Biol 2008 105 134

[10] A. Mogilner, E.L. Barnhart, K. Keren Experiment, theory, and the keratocyte: an ode to a simple model for cell motility Seminarsin Cell Dev. Biol 2020 143 151

[11] D.K. Schlüter, I.R. Conde, M.A.J. Chaplain Computational modeling of single-cell migration: the leading role of extracellular matrix fibers Biophys. J 2012 1141 1151

[12] E. Tjhung, A. Tiribocchi, D. Marenduzzo, M. Cates A minimal physical model captures the shapes of crawling cells Nat. Commun 2015 5420

[13] B. Winkler, I.S. Aranson, F. Ziebert Confinement and substrate topography control cell migration in a 3d computational model Commun. Phys 2019 82

[14] P.H. Wu, D.M. Gilkes, D. Wirtz Annual review of biophysics: the biophysics of 3d cell migration Annu. Rev. Biophys 2018 549 567

[15] M.H. Zaman, R.D. Kamm, P. Matsudaira, D.A. Lauffenburger Computational model for cell migration in three-dimensional matrices Biophys. J 2005 1389 1397

[16] F. Ziebert, I.S. Aranson Modular approach for modeling cell motility Eur. Phys. J. Special Topics 2014 1265 1277

[17] F. Ziebert, I.S. Aranson Computational approaches to substrate-based cell motility npj Comput. Mater 2016 16019

[18] F. Ziebert, S. Swaminathan, I.S. Aranson Model for self-polarization and motility of keratocyte fragments J. R. Soc. Interface 2012 1084 1092

Cité par Sources :