Voir la notice de l'article provenant de la source EDP Sciences
Mohammad Abu Hamed 1, 2, 3 ; Alexander A. Nepomnyashchy 1
@article{MMNP_2021_16_a24, author = {Mohammad Abu Hamed and Alexander A. Nepomnyashchy}, title = {Three-dimensional phase field model for actin-based cell membrane dynamics}, journal = {Mathematical modelling of natural phenomena}, eid = {56}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021048}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021048/} }
TY - JOUR AU - Mohammad Abu Hamed AU - Alexander A. Nepomnyashchy TI - Three-dimensional phase field model for actin-based cell membrane dynamics JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021048/ DO - 10.1051/mmnp/2021048 LA - en ID - MMNP_2021_16_a24 ER -
%0 Journal Article %A Mohammad Abu Hamed %A Alexander A. Nepomnyashchy %T Three-dimensional phase field model for actin-based cell membrane dynamics %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021048/ %R 10.1051/mmnp/2021048 %G en %F MMNP_2021_16_a24
Mohammad Abu Hamed; Alexander A. Nepomnyashchy. Three-dimensional phase field model for actin-based cell membrane dynamics. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 56. doi : 10.1051/mmnp/2021048. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021048/
[1] Actin-based cell protrusion in a 3d matrix Trends Cell Biol 2018 823 834
,[2] Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. theoretical approach. Phys. Rev. E 1999 1724
, ,[3] Dynamics of curved fronts in systems with power-law memory Physica D 2016 1 8
,[4] A simple model of keratocyte membrane dynamics: the case of motionless living cell Physica D 2020 132465
,[5] J. Happel and H. Brenner, Low Reynolds number hydrodynamics. Martinus Nijhoff Publisher (1983).
[6] Mechanism of shape determination in motile cells Nature 2008 475 480
, , , , , ,[7] Hydrodynamic effects on the motility of crawling eukaryotic cells Soft Matter 2020 1349 1358
,[8] Filopodia: molecular architecture and cellular functions Nature Publishing Group 2008 446 454
,[9] Mathematics of cell motility: have we got its number? Math. Biol 2008 105 134
[10] Experiment, theory, and the keratocyte: an ode to a simple model for cell motility Seminarsin Cell Dev. Biol 2020 143 151
, ,[11] Computational modeling of single-cell migration: the leading role of extracellular matrix fibers Biophys. J 2012 1141 1151
, ,[12] A minimal physical model captures the shapes of crawling cells Nat. Commun 2015 5420
, , ,[13] Confinement and substrate topography control cell migration in a 3d computational model Commun. Phys 2019 82
, ,[14] Annual review of biophysics: the biophysics of 3d cell migration Annu. Rev. Biophys 2018 549 567
, ,[15] Computational model for cell migration in three-dimensional matrices Biophys. J 2005 1389 1397
, , ,[16] Modular approach for modeling cell motility Eur. Phys. J. Special Topics 2014 1265 1277
,[17] Computational approaches to substrate-based cell motility npj Comput. Mater 2016 16019
,[18] Model for self-polarization and motility of keratocyte fragments J. R. Soc. Interface 2012 1084 1092
, ,Cité par Sources :