Threshold dynamics for a class of stochastic SIRS epidemic models with nonlinear incidence and Markovian switching
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 55.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we consider a stochastic SIRS epidemic model with nonlinear incidence and Markovian switching. By using the stochastic calculus background, we establish that the stochastic threshold ℜswt can be used to determine the compartment dynamics of the stochastic system. Some examples and numerical simulations are presented to confirm the theoretical results established in this paper.
DOI : 10.1051/mmnp/2021047

A. El Koufi 1 ; A. Bennar 1 ; N. Yousfi 1 ; M. Pitchaimani 2

1 Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’sik, Hassan II University, P.O. Box 7955 Sidi Othman, Casablanca, Morocco.
2 Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai 600 005, Tamil Nadu, India.
@article{MMNP_2021_16_a35,
     author = {A. El Koufi and A. Bennar and N. Yousfi and M. Pitchaimani},
     title = {Threshold dynamics for a class of stochastic {SIRS} epidemic models with nonlinear incidence and {Markovian} switching},
     journal = {Mathematical modelling of natural phenomena},
     eid = {55},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021047},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021047/}
}
TY  - JOUR
AU  - A. El Koufi
AU  - A. Bennar
AU  - N. Yousfi
AU  - M. Pitchaimani
TI  - Threshold dynamics for a class of stochastic SIRS epidemic models with nonlinear incidence and Markovian switching
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021047/
DO  - 10.1051/mmnp/2021047
LA  - en
ID  - MMNP_2021_16_a35
ER  - 
%0 Journal Article
%A A. El Koufi
%A A. Bennar
%A N. Yousfi
%A M. Pitchaimani
%T Threshold dynamics for a class of stochastic SIRS epidemic models with nonlinear incidence and Markovian switching
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021047/
%R 10.1051/mmnp/2021047
%G en
%F MMNP_2021_16_a35
A. El Koufi; A. Bennar; N. Yousfi; M. Pitchaimani. Threshold dynamics for a class of stochastic SIRS epidemic models with nonlinear incidence and Markovian switching. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 55. doi : 10.1051/mmnp/2021047. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021047/

[1] J.R. Beddington Mutual interference between parasites or predators and its effect on searching efficiency J. Anim. Ecol 1975 331 340

[2] Z. Chen, Z. Tian, S. Zhang, C. Wei The stationary distribution and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton under regime switching Physica A 2020 122728

[3] N.T. Dieu, T. Fugo, N.H. Du Asymptotic behaviors of stochastic epidemic models with jump-diffusion Appl. Math. Model 2020 259 270

[4] N.H. Du, N.T. Dieu, N.N. Nhu Conditions for permanence and ergodicity of certain SIR epidemic models Acta Appl. Math 2019 81 99

[5] A. El Koufi, A. Bennar, N. El Koufi, N. Yousfi Asymptotic properties of a stochastic SIQR epidemic model with Lévy Jumps and Beddington-DeAngelis incidence rate Results Phys 2021 104472

[6] A. El Koufi, J. Adnani, A. Bennar, N. Yousfi Analysis of a stochastic SIR model with vaccination and nonlinear incidence rate Int. J. Diff. Equat 2019

[7] Z. Han, J. Zhao Stochastic SIRS model under regime switching Nonlinear Anal-Real 2013 352 364

[8] P. Han, Z. Chang, X. Meng Asymptotic dynamics of a stochastic sir epidemic system affected by mixed nonlinear incidence rates Complexity 2020

[9] H. Hethcote, M. Zhien, L. Shengbing Effects of quarantine in six endemic models for infectious diseases Math. Biosci 2002 141 160

[10] D.J. Higham An algorithmic introduction to numerical simulation of stochastic differential equations SIAM Rev 2001 525 546

[11] L. Huo, J. Jiang, S. Gong, B. He Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event Physica A 2016 228 240

[12] M.N. Jan, N. Ali, G. Zaman, I. Ahmad, Z. Shah, P. Kumam HIV-1 infection dynamics and optimal control with Crowley-Martin function response Comput. Meth. Prog. Biol 2020 105503

[13] D. Jiang, J. Yu, C. Ji, N. Shi Asymptotic behavior of global positive solution to a stochastic SIR model Math. Comput. Model 2011 221 232

[14] W.O. Kermack, A.G. Mckendrick Contributions to the mathematical theory of epidemics (part I) Proc. R. Soc. Lond. Ser. A 1927 700 721

[15] A.E. Koufi, A. Bennar, N. Yousfi Dynamics of a stochastic SIRS epidemic model with regime switching and specific functional response Discr. Dyn. Nat. Soc 2020

[16] M.A. Khan, Y. Khan, S. Islam Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment Physica A 2018 210 227

[17] R. Khasminskii, Stochastic stability of differential equations. Springer Science Business Media (2011).

[18] G. Lan, Z. Lin, C. Wei, S. Zhang A stochastic SIRS epidemic model with non-monotone incidence rate under regime-switching J. Frankl. Inst 2019 9844 9866

[19] G. Lan, Z. Lin, C. Wei, S. Zhang A stochastic SIRS epidemic model with non-monotone incidence rate under regime-switching J. Frankl. Inst 2019 9844 9866

[20] Y. Lin, L. Wang, X. Dong Long-time behavior of a regime-switching SIRS epidemic model with degenerate diffusion Physica A 2019 121551

[21] T. Li, F. Zhang, H. Liu, Y. Chen Threshold dynamics of an SIRS model with nonlinear incidence rate and transfer from infectious to susceptible Appl. Math. Lett 2017 52 57

[22] Y. Liu, Y. Zhang, Q. Wang A stochastic SIR epidemic model with Lévy jump and media coverage Adv. Differ. Equ-Ny 2020 1 15

[23] Q. Liu, D. Jiang Threshold behavior in a stochastic SIR epidemic model with Logistic birth Physica A 2020 123488

[24] Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad A stochastic SIRS epidemic model with logistic growth and general nonlinearincidence rate Physica A 2020 124 152

[25] X. Mao and C. Yuan, Stochastic differential equations with Markovian switching. Imperial College Press (2006).

[26] X. Mao, G. Marion, E. Renshaw Environmental noise suppresses explosion in population dynamics Stoch. Process. Appl 2002 95 110

[27] D. Nguyen, N. Nguyen, G. Yin Analysis of a spatially inhomogeneous stochastic partial differential equation epidemic model J.Appl. Probab 2020 613 636

[28] N.D. Phu, D. O’Regan, T.D. Tuong Longtime characterization for the general stochastic epidemic SIS model under regime-switching Nonlinear. Anal-Hybri 2020 100951

[29] N.D. Phu, D. O’Regan, T.D. Tuong Longtime characterization for the general stochastic epidemic SIS model under regime-switching Nonlinear. Anal-Hybri 2020 100951

[30] M. Pitchaimani Stochastic dynamical probes in a triple delayed SICR model with general incidence rate and immunization strategies Chaos. Soliton. Fractals 2021 110540

[31] S.P. Rajasekar, M. Pitchaimani, Q. Zhu Progressive dynamics of a stochastic epidemic model with logistic growth and saturatedtreatment Physica A 2020 122649

[32] R. Rifhat, A. Muhammadhaji, Z. Teng Asymptotic properties of a stochastic SIRS epidemic model with nonlinear incidence and varying population sizes Dyn. Syst 2020 56 80

[33] R. Rifhat, L. Wang, Z. Teng Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients Physica A 2017 176 190

[34] S. Ruan, W. Wang Dynamical behavior of an epidemic model with a nonlinear incidence rate J. Differ. Equ 2003 135 163

[35] T. Tang, Z. Teng, Z. Li Threshold behavior in a class of stochastic SIRS epidemic models with nonlinear incidence Stoch. Anal. Appl 2015 994 1019

[36] T.D. Tuong, D.H. Nguyen, N.T. Dieu, K. Tran Extinction and permanence in a stochastic SIRS model in regime-switching with general incidence rate Nonlinear. Anal-Hybri 2019 121 130

[37] C. Xu, X. Li The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination Chaos. Solitons. Fract 2018 227 234

[38] Q. Yan, Y. Tang, D. Yan, J. Wang, L. Yang, X. Yang, S. Tang Impact of media reports on the early spread of COVID-19 epidemic J. Theor. Biol 2020 110385

[39] X. Yu, S. Yuan, T. Zhang Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching Commun. Nonlinear. Sci. Numer. Simulat 2018 359 374

[40] X.B. Zhang, H.F. Huo, H. Xiang, Q. Shi, D. Li The threshold of a stochastic SIQS epidemic model Physica A 2017 362 374

[41] Y. Zhang, K. Fan, S. Gao, Y. Liu, S. Chen Ergodic stationary distribution of a stochastic SIRS epidemic model incorporating media coverage and saturated incidence rate Physica A 2019 671 685

[42] X.B. Zhang, X.H. Zhang The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size Appl. Math. Model 2021 749 767

Cité par Sources :