Analysis of phase waves in the ECoG data
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 54.

Voir la notice de l'article provenant de la source EDP Sciences

Subdural ECoG data recorded from the matrix of electrodes during syllable pronunciation are analyzed by the method of circular-linear regression. Phase waves in 1D electrode arrays and in the whole 2D set of electrodes are detected, and their spatial organization and temporal evolution are studied. Phase portraits of wave vectors indicate the presence of sources, sinks, and saddle points. The analysis of temporal evolution of phase portraits shows that they changed more at the beginning of syllable pronunciation. Furthermore, wave sources were more stable in their localization during the pronunciation. Overall, in spite of large variability of phase portraits, they represent some characterization of the dynamics of electric potential in the cerebral cortex.
DOI : 10.1051/mmnp/2021045

Alexandre Aksenov 1 ; Anne Beuter  1

1 CorStim SAS, Montpellier, France.
@article{MMNP_2021_16_a56,
     author = {Alexandre Aksenov and Anne Beuter },
     title = {Analysis of phase waves in the {ECoG} data},
     journal = {Mathematical modelling of natural phenomena},
     eid = {54},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021045},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021045/}
}
TY  - JOUR
AU  - Alexandre Aksenov
AU  - Anne Beuter 
TI  - Analysis of phase waves in the ECoG data
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021045/
DO  - 10.1051/mmnp/2021045
LA  - en
ID  - MMNP_2021_16_a56
ER  - 
%0 Journal Article
%A Alexandre Aksenov
%A Anne Beuter 
%T Analysis of phase waves in the ECoG data
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021045/
%R 10.1051/mmnp/2021045
%G en
%F MMNP_2021_16_a56
Alexandre Aksenov; Anne Beuter . Analysis of phase waves in the ECoG data. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 54. doi : 10.1051/mmnp/2021045. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021045/

[1] M.A. Bertolero, B.T. Thomas Yeo, M. D’Esposito The modular and integrative functional architecture of the human brain Proc. Natl. Acad. Sci. U.S.A 2015 E6798 E6807

[2] A. Benitez-Burraco, E. Murphy Why brain oscillations are improving our understanding of language Front. Behav. Neurosci 2019 190

[3] K.E. Bouchard, N. Mesgarani, K. Johnson, E.F. Chang Functional organization of human sensorimotor cortex for speech articulation Nature 2013 327 332

[4] L.M. Brekhovskikh, Waves in Layered Media. Academic Press, New York (1960).

[5] Y. Buskila, A. Bellot-Saez, A. Morley Generating brain waves, the power of astrocytes Front. Neurosci 2019 1125

[6] Ǵ. Buzsaki, C.A. Anastassiou, C. Koch The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes Nat. Rev. Neurosci 2016 407 420

[7] N.I. Fisher, Statistical Analysis of Circular Data. Cambridge University Press, Cambridge (1993).

[8] N.I. Fisher, A.T. Lee Regression models for an angular response Biometrics 1992 665 677

[9] M. Hassan, P. Benquet, A. Biraben, C. Berrou, O. Dufor, F. Wendling Dynamic reorganization of functional brain networks during picture naming Cortex 2015 276 288

[10] W. Klimesch, S. Hanslmayr, P. Sauseng, W.R. Gruber, M. Doppelmayr P1 and traveling alpha waves: evidence for evoked oscillation J. Neurophysiol 2007 1311 1318

[11] Y. Liang, C. Song, M. Liu, P. Gong, C. Zhou, T. Knöpfel Cortex-wide dynamics of intrinsic electrical activities: propagating waves and their interactions J. Neurosci 2021 3665 3678

[12] K.V. Mardia, Statistics of Directional Data. Academic Press, London (1972).

[13] L. Muller, F. Chavane, J. Reynolds, T.J. Sejnowski Cortical travelling waves: mechanisms and computational principles Nat. Rev. Neurosci 2018 255 268

[14] L. Muller, G. Piantoni, D. Koller, S.S. Cash, E. Halgren, T.J. Sejnowski Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night eLife 2016 e17267

[15] Y. Nir, R.J. Staba, T. Andrillon, V.V. Vyazovskiy, C. Cirelli, I. Fried, G. Tononi Regional slow waves and spindles in human sleep Neuron 2011 153 169

[16] T.M. Patten, C.J. Rennie, P.A. Robinson, P. Gong Human cortical traveling waves: dynamical properties and correlations with responses PLoS ONE 2012 e38392

[17] J. Rapela, Entrainment of traveling waves to rhythmic motor acts. arxiv preprint arXiv:1606.02372 (2016).

[18] J. Rapela, Rhythmic production of consonant-vowel syllables synchronizes traveling waves in speech-processing brain regions. preprint arXiv:1705.01615 (2017).

[19] J. Rapela, Traveling waves appear and disappear in unison with produced speech. arXiv preprint: arXiv:1806.09559 (2018).

[20] S.K. Riès, R.K. Dhillon, A. Clarke, D. King-Stephens, K.D. Laxer, P.B. Weber, R.A. Kupermang, K.I. Auguste, P. Brunner, G. Schalk, J.J. Lin, J. Parvizi, N.E. Crone, N.F. Dronkers, R.T. Knight Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity PNAS 2017

[21] R.G. Townsend, P. Gong Detection and analysis of spatiotemporal patterns in brain activity PLoS Comput. Biol 2018 e1006643

[22] J.Y. Wu, X. Huang, C. Zhang Propagating Waves of activity in the neocortex: what they are, what they do Neuroscientist 2008 487 502

[23] H. Zhang, A.J. Watrous, A. Patel, J. Jacobs Theta and alpha oscillations are traveling waves in the human neocortex Neuron 2018 1 13

Cité par Sources :