Mixing control in a continuous-flow microreactor using electro-osmotic flow
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 49.

Voir la notice de l'article provenant de la source EDP Sciences

In recent years, pharmaceutical production has been stimulating the gradual miniaturization of continuous-flow chemical reactors. This process eventually resulted in the emergence of a new generation of microreactors. The advantages of these new reactor types are the flexible production that allows us to quickly reconfigure the scheme, small reactant quantities used for the synthesis, the control of the main reaction parameters with high accuracy. Nevertheless, a decrease in the thickness of the channels where the species contact and react forces us to search for new non-mechanical mechanisms for mixing. This problem is relevant for the slow reaction occurring in a slot where diffusion alone cannot provide mixing at reasonable distances from the entrance. It is also true for the fast reaction that takes place in a frontal manner. In this work, we consider the efficiency of mixing the reactants induced by electro-osmotic flow in a Hele-Shaw configuration with non-uniform zeta potential distribution. As a test reaction, we take the neutralization reaction with simple albeit non-linear kinetics. The reaction occurs between two miscible solutions, which are initially separated in space and come into contact in a continuous-flow microreactor. The reaction proceeds frontally, which prevents the efficient mixing of the reactants due to diffusion. Using direct numerical simulations of 2D and 3D flows, we demonstrate that the zeta potential applied to boundaries can effectively control the mixing rate of fluids by lengthening the front of the reaction. This approach makes it possible to increase the yield of the reaction product.
DOI : 10.1051/mmnp/2021043

Ramil Siraev 1 ; Pavel Ilyushin 2 ; Dmitry Bratsun 1

1 Department of Applied Physics, Perm National Research Polytechnic University, 614990 Perm, Russia.
2 Department of Oil and Gas Technologies, Perm National Research Polytechnic University, 614990 Perm, Russia.
@article{MMNP_2021_16_a9,
     author = {Ramil Siraev and Pavel Ilyushin and Dmitry Bratsun},
     title = {Mixing control in a continuous-flow microreactor using electro-osmotic flow},
     journal = {Mathematical modelling of natural phenomena},
     eid = {49},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021043},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021043/}
}
TY  - JOUR
AU  - Ramil Siraev
AU  - Pavel Ilyushin
AU  - Dmitry Bratsun
TI  - Mixing control in a continuous-flow microreactor using electro-osmotic flow
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021043/
DO  - 10.1051/mmnp/2021043
LA  - en
ID  - MMNP_2021_16_a9
ER  - 
%0 Journal Article
%A Ramil Siraev
%A Pavel Ilyushin
%A Dmitry Bratsun
%T Mixing control in a continuous-flow microreactor using electro-osmotic flow
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021043/
%R 10.1051/mmnp/2021043
%G en
%F MMNP_2021_16_a9
Ramil Siraev; Pavel Ilyushin; Dmitry Bratsun. Mixing control in a continuous-flow microreactor using electro-osmotic flow. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 49. doi : 10.1051/mmnp/2021043. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021043/

[1] A. Ajdari Electroosmosis on inhomogeneously charged surfaces Phys. Rev. Lett. 1995 755 759

[2] M. Baumann, I.R. Baxendale The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry Beilstein J. Org. Chem 2015 1194 1219

[3] E. Boyko, S. Rubin, A.D. Gat, M. Bercovoci Flow patterning in Hele-Shaw configurations using non-uniform electro-osmotic slip Phys. Fluids. 2015 102001

[4] E. Boyko, M. Bercovici, A. Gat Flow of power-law liquids in a Hele-Shaw cell driven by non-uniform electro-osmotic slip in the case of strong depletion J. Fluid Mech. 2016 235 257

[5] D.A. Bratsun, A. De Wit Buoyancy-driven pattern formation in reactive immiscible two-layer systems Chem. Eng. Sci 2011 5723 5734

[6] D. Bratsun, K. Kostarev, A. Mizev, E. Mosheva Concentration-dependent diffusion instability in reactive miscible fluids Phys. Rev. E. 2015 011003

[7] D.A. Bratsun, O.S. Stepkina, K.G. Kostarev, A.I. Mizev, E.A. Mosheva Development of con-centration-dependent diffusion instability in reactive miscible fluids under influence of constant or variable inertia Microgr. Sci. Technol. 2016 575 585

[8] D. Bratsun, A. Mizev, E. Mosheva, K. Kostarev Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids Phys. Rev. E. 2017 053106

[9] D. Bratsun, K. Kostarev, A. Mizev, S. Aland, M. Mokbel, K. Schwarzenberger, K. Eckert Adaptive micromixer based on the solutocapillary Marangoni effect in a continuous-flow microreactor Micromachines 2018 600

[10] D. Bratsun, R. Siraev Controlling mass transfer in a continuous-flow microreactor with a variable wall relief Int. Commun. Heat Mass Transf 2020 104522

[11] H. Chen, Y.T. Zhang, I. Mezic, C.D. Meinhart, L. Petzold Numerical simulation of an electroosmotic micromixer Proc Microfluidics 2003 (ASME IMECE) 2003

[12] E. Cummings, S. Griffiths, R. Nilson, P. Paul Conditions for similitude between the fluid velocity and the electric field in electroosmotic flow Anal. Chem. 2000 2526 2532

[13] P.V. Danckwerts, Gas-liquid reactions. McGraw-Hill Book Co., New York (1970).

[14] S.S. Dukhin Non-equilibrium electric surface phenomena Adv. Colloid Interface Sci. 1993 1 134

[15] P. Federico, B. Vesna, V. Govind Kaigala, M. Bercovoci Dynamic microscale flow patterning using electrical modulation of zeta potential Proc. Natl. Acad. Sci. 2019 10258 10263

[16] V.L. Hessel, F. Holger-Schönfeld Micromixers – a review on passive and active mixing principles Chem. Eng. Sci. 2005 2479

[17] K.F. Jensen Microreaction engineering – is small better? Chem. Eng. Sci. 2001 293

[18] L. Joly, C. Ybert, E. Trizac, L. Bocquet Hydrodynamics within the electric double layer on slipping surfaces Phys. Rev. Lett. 2004 257805

[19] A.S. Khair, T.M. Squires Fundamental aspects of concentration polarization arising from nonuniform electrokinetic transport Phys. Fluids 2008 087102

[20] L.G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport. Cambridge University Press, Cambridge (2007).

[21] J. Lyklema (Ed.), Vol. 2 of Fundamentals of Interface and Colloid Science: solid–liquid Interfaces. Academic Press (1995).

[22] S. Mascia, P.L. Heider, H. Zhang, R. Lakerveld, B. Benyahia, P.I. Barton, R.D. Braatz, C.L. Cooney, J.M.B. Evans, T.F. Jamison, K.F. Jensen, A.S. Myerson, B.L. Trout End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation Angew. Chem. Int. Ed 2013 12359 12363

[23] S. Muthu, F. Svec, C.H. Mastrangelo, J.M.J. Frechet and Y.B. Gianchandani, Enhanced electro-osmotic pumping with liquid bridge and field effect flow rectification. 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest (IEEE, New York) (2004).

[24] M.J. Nieves-Remacha, A.A. Kulkarni, K.F. Jensen Hydrodynamics of liquid–liquid dispersion in an advanced-flow reactor Ind. Eng. Chem. Res. 2012 16251

[25] F. Paratore, E. Boyko, G. Kaigala, M. Bercovici Electroosmotic flow dipole: experimental observation and flow field patterning Phys. Rev. Lett. 2019 224502

[26] F. Paratore, E. Boyko, A.D. Gat, G.V. Kaigala, M. Bercovici Toward microscale flow control using non-uniform electro-osmotic flow Proceedings SPIE BiOS: Microfluidics, BioMEMS, and Medical Microsystems XVI (International Society for Optics and Photonics, Bellingham, WA) 2018

[27] L. Pellegatti, J. Sedelmeier Synthesis of vildagliptin utilizing continuous flow and batch technologies Org. Process Res. Dev 2015 551 554

[28] W. Reschetilowski (Ed.), Microreactors in preparative chemistry. Wiley-VCH, Weinheim (2013).

[29] A.D. Stroock, S.K.W. Dertinger, A. Ajdari Chaotic mixer for microchannels Science 2002 647 651

[30] E.J. Van Der Wouden, D.C. Hermes, J.G.E. Gardeniers, A. Van Den Berg Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields Lab Chip. 2006 1300 1305

[31] J. Wegner, S. Ceylan, A. Kirschning Ten key issues in modern flow chemistry Chem. Commun. 2011 4583

[32] J. Zeng, Y.C. Yortsos, D. Salin On the Brinkman correction in uni-directional Hele-Shaw flows Phys. Fluids 2003 3829

[33] Y.T. Zhang, H. Chen, I. Mezic, C.D. Meinhart, L. Petzold, N.C. Macdonald SOI processing of a ring electrokinetic chaotic micromixer Proc NSTI Nanotechnology Conference (Nanotech 2004) 2003

Cité par Sources :