Invariant measure of stochastic higher order KdV equation driven by Poisson processes
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 51.

Voir la notice de l'article provenant de la source EDP Sciences

The current paper is devoted to stochastic damped higher order KdV equation driven by Poisson process. We establish the well-posedness of stochastic damped higher-order KdV equation, and prove that there exists an unique invariant measure for non-random initial conditions. Some discussion on the general pure jump noise case are also provided. Some numerical simulations of the invariant measure are provided to support the theoretical results.
DOI : 10.1051/mmnp/2021041

Pengfei Xu 1 ; Jianhua Huang 1 ; Wei Yan 2

1 College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, PR China.
2 College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, PR China.
@article{MMNP_2021_16_a54,
     author = {Pengfei Xu and Jianhua Huang and Wei Yan},
     title = {Invariant measure of stochastic higher order {KdV} equation driven by {Poisson} processes},
     journal = {Mathematical modelling of natural phenomena},
     eid = {51},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021041},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021041/}
}
TY  - JOUR
AU  - Pengfei Xu
AU  - Jianhua Huang
AU  - Wei Yan
TI  - Invariant measure of stochastic higher order KdV equation driven by Poisson processes
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021041/
DO  - 10.1051/mmnp/2021041
LA  - en
ID  - MMNP_2021_16_a54
ER  - 
%0 Journal Article
%A Pengfei Xu
%A Jianhua Huang
%A Wei Yan
%T Invariant measure of stochastic higher order KdV equation driven by Poisson processes
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021041/
%R 10.1051/mmnp/2021041
%G en
%F MMNP_2021_16_a54
Pengfei Xu; Jianhua Huang; Wei Yan. Invariant measure of stochastic higher order KdV equation driven by Poisson processes. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 51. doi : 10.1051/mmnp/2021041. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021041/

[1] D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge Studies in Advance Mathematics. Cambridge University Press (2004).

[2] U.M. Ascher, R.I. Mclachlan On symplectic and multisymplectic schemes for the KdV equation J. Sci. Comput 2005 83 104

[3] J. Bourgain Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schrödinger equations Geom. Funct. Anal. 1993 107 156

[4] J. Bourgain Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: The KdV equation Geom. Funct. Anal. 1993 209 262

[5] J. Bourgain Periodic Korteweg de vries equation with measures as initial data Sel. Math 1997 115 159

[6] A. Bouard, A. Debussche On the stochastic Korteweg-de Vries equation J. Funct. Anal 1998 215 251

[7] A. Bouard, A. Debussche, Y. Tsutsumi White noise driven Korteweg-de Vries equation J. Funct. Anal 1999 532 558

[8] A. Bouard, A. Debussche Random modulation of solitons for the stochastic Korteweg-de Vries equation Ann. Inst. Henri Poincaré (C) Analyse Non Linéaire 2007 251 278

[9] A. Bouard, E. Hausenblas The nonlinear Schrödinger equation driven by jump processes J. Math. Anal. Appl 2019 215 252

[10] Z. Brzé Niak, J. Zabczyk Regularity of Ornstein-Uhlenbeck process driven by a Lévy white noise Potential Anal 2010 153 188

[11] T. Buckmaster, H. Koch The Korteweg-de Vries equation at H−1 regularity Ann. Inst. Henri Poincaré-AN 2015 1071 1098

[12] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao Sharp global well-posedness for KdV and modified KdV on R and T J. Am. Math. Soc 2003 705 749

[13] M. Christ, J. Colliander, T. Tao Asympotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations Am. J. Math 2003 1235 1293

[14] Z. Dong, T. Xu, T. Zhang Invariant measures for stochastic evolution equations of pure jump type Stoch. Proc. Appl 2009 410 427

[15] I. Ekren, I. Kukavica Existence of invariant measures for the stochastic damped Kdv equation Indiana Univ. Math. J 2018 1221 1254

[16] Z. Guo Global well-posedness of the Korteweg-de Vries equation in H−3∕4 J. Math. Pures Appl 2009 583 597

[17] M. Hairer, Ergodicity for stochastic PDEs, 2008. http://www.hairer.org/notes/Imperial.pdf.

[18] T. Kappeler, P. Topalov Global wellposedness of KdV in H−1(T, R) Duke Math. J 2006 327 360

[19] C. Kenig, G. Ponce, L. Vega Well-posedness of the initial value problem for the Korteweg-de Vries equation J. Am. Math. Soc 1991 323 47

[20] C. Kenig, G. Ponce, L. Vega The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices Duke Math. J 1993 1 21

[21] C. Kenig, G. Ponce, L. Vega Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle Comm. Pure Appl. Math 1993 527 620

[22] C. Kenig, G. Ponce, L. Vega A bilinear estimate with applications to the KdV equation J. Am. Math. Soc 1996 573 603

[23] C. Kenig, G. Ponce, L. Vega On the ill-posedness of some canonical dispersive equations Duke Math. J 2001 617 633

[24] R. Killip, M. Visan KdV is well-posed in H−1 Ann. Math 2019 249 305

[25] N. Kishimoto Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity Diff. Int. Equ 2009 447 464

[26] S. Klainerman, M. Machedon Smoothing estimates for null forms and applications Internat. Math. Res. Notices 1994 383ff

[27] D. Korteweg, G. De Vries On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves Phil. Mag 1985 422 443

[28] S. Li, Well-posedness and asymptotic behavior for some nonlinear evolution equations. Dissertation, 2015.

[29] Y. Li, W. Yan The Cauchy problem for higher-order KdV equations forced by white noise J. Henan Normal Univ 2017 1 8

[30] L. Molinet A note on ill posedness for the KdV equation Diff. Int. Equ 2011 759 765

[31] L. Molinet Sharp ill-posedness results for the KdV and mKdV equations on the torus Adv. Math 2012 1895 1930

[32] G. Prato and J. Zabczyk, Ergodicity for infinite-dimensional systems. Cambridge University Press, Cambridge (1996).

[33] G. Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge (1992).

[34] T. Tao Multilinear weighted convolution of L2 functions, and applications to non-linear dispersive equations Am. J. Math 2001 839 908

[35] N. Tzvetkov Remark on the local ill-posedness for KdV equation C. R. Acad Sci Paris 1999 1043 1047

Cité par Sources :