Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2021_16_a54, author = {Pengfei Xu and Jianhua Huang and Wei Yan}, title = {Invariant measure of stochastic higher order {KdV} equation driven by {Poisson} processes}, journal = {Mathematical modelling of natural phenomena}, eid = {51}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021041}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021041/} }
TY - JOUR AU - Pengfei Xu AU - Jianhua Huang AU - Wei Yan TI - Invariant measure of stochastic higher order KdV equation driven by Poisson processes JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021041/ DO - 10.1051/mmnp/2021041 LA - en ID - MMNP_2021_16_a54 ER -
%0 Journal Article %A Pengfei Xu %A Jianhua Huang %A Wei Yan %T Invariant measure of stochastic higher order KdV equation driven by Poisson processes %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021041/ %R 10.1051/mmnp/2021041 %G en %F MMNP_2021_16_a54
Pengfei Xu; Jianhua Huang; Wei Yan. Invariant measure of stochastic higher order KdV equation driven by Poisson processes. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 51. doi : 10.1051/mmnp/2021041. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021041/
[1] D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge Studies in Advance Mathematics. Cambridge University Press (2004).
[2] On symplectic and multisymplectic schemes for the KdV equation J. Sci. Comput 2005 83 104
,[3] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schrödinger equations Geom. Funct. Anal. 1993 107 156
[4] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: The KdV equation Geom. Funct. Anal. 1993 209 262
[5] Periodic Korteweg de vries equation with measures as initial data Sel. Math 1997 115 159
[6] On the stochastic Korteweg-de Vries equation J. Funct. Anal 1998 215 251
,[7] White noise driven Korteweg-de Vries equation J. Funct. Anal 1999 532 558
, ,[8] Random modulation of solitons for the stochastic Korteweg-de Vries equation Ann. Inst. Henri Poincaré (C) Analyse Non Linéaire 2007 251 278
,[9] The nonlinear Schrödinger equation driven by jump processes J. Math. Anal. Appl 2019 215 252
,[10] Regularity of Ornstein-Uhlenbeck process driven by a Lévy white noise Potential Anal 2010 153 188
,[11] The Korteweg-de Vries equation at H−1 regularity Ann. Inst. Henri Poincaré-AN 2015 1071 1098
,[12] Sharp global well-posedness for KdV and modified KdV on R and T J. Am. Math. Soc 2003 705 749
, , , ,[13] Asympotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations Am. J. Math 2003 1235 1293
, ,[14] Invariant measures for stochastic evolution equations of pure jump type Stoch. Proc. Appl 2009 410 427
, ,[15] Existence of invariant measures for the stochastic damped Kdv equation Indiana Univ. Math. J 2018 1221 1254
,[16] Global well-posedness of the Korteweg-de Vries equation in H−3∕4 J. Math. Pures Appl 2009 583 597
[17] M. Hairer, Ergodicity for stochastic PDEs, 2008. http://www.hairer.org/notes/Imperial.pdf.
[18] Global wellposedness of KdV in H−1(T, R) Duke Math. J 2006 327 360
,[19] Well-posedness of the initial value problem for the Korteweg-de Vries equation J. Am. Math. Soc 1991 323 47
, ,[20] The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices Duke Math. J 1993 1 21
, ,[21] Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle Comm. Pure Appl. Math 1993 527 620
, ,[22] A bilinear estimate with applications to the KdV equation J. Am. Math. Soc 1996 573 603
, ,[23] On the ill-posedness of some canonical dispersive equations Duke Math. J 2001 617 633
, ,[24] KdV is well-posed in H−1 Ann. Math 2019 249 305
,[25] Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity Diff. Int. Equ 2009 447 464
[26] Smoothing estimates for null forms and applications Internat. Math. Res. Notices 1994 383ff
,[27] On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves Phil. Mag 1985 422 443
,[28] S. Li, Well-posedness and asymptotic behavior for some nonlinear evolution equations. Dissertation, 2015.
[29] The Cauchy problem for higher-order KdV equations forced by white noise J. Henan Normal Univ 2017 1 8
,[30] A note on ill posedness for the KdV equation Diff. Int. Equ 2011 759 765
[31] Sharp ill-posedness results for the KdV and mKdV equations on the torus Adv. Math 2012 1895 1930
[32] G. Prato and J. Zabczyk, Ergodicity for infinite-dimensional systems. Cambridge University Press, Cambridge (1996).
[33] G. Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge (1992).
[34] Multilinear weighted convolution of L2 functions, and applications to non-linear dispersive equations Am. J. Math 2001 839 908
[35] Remark on the local ill-posedness for KdV equation C. R. Acad Sci Paris 1999 1043 1047
Cité par Sources :