Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2021_16_a41, author = {Aline Lefebvre-Lepot and Flore Nabet}, title = {Numerical simulation of rigid particles in {Stokes} flow: lubrication correction for general shapes of particles}, journal = {Mathematical modelling of natural phenomena}, eid = {45}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021037}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021037/} }
TY - JOUR AU - Aline Lefebvre-Lepot AU - Flore Nabet TI - Numerical simulation of rigid particles in Stokes flow: lubrication correction for general shapes of particles JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021037/ DO - 10.1051/mmnp/2021037 LA - en ID - MMNP_2021_16_a41 ER -
%0 Journal Article %A Aline Lefebvre-Lepot %A Flore Nabet %T Numerical simulation of rigid particles in Stokes flow: lubrication correction for general shapes of particles %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021037/ %R 10.1051/mmnp/2021037 %G en %F MMNP_2021_16_a41
Aline Lefebvre-Lepot; Flore Nabet. Numerical simulation of rigid particles in Stokes flow: lubrication correction for general shapes of particles. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 45. doi : 10.1051/mmnp/2021037. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021037/
[1] Friction and mobility of many spheres in stokes flow J. Chem. Phys 1994 3780 3790
, , , ,[2] The motion of suspended particles almost in contact Int. J. Multiphase Flow 1974 343 371
[3] Dynamic simulation of hydrodynamically interacting particles J. Fluid Mech 1987 21 49
, ,[4] FreeFem webpage, https://freefem.org/. Accessed: 2019-09-30.
[5] A fictitious domain approach for the simulation of dense suspensions J. Comput. Phys 2014 367 387
, , ,[6] The singular hydrodynamic interactions between two spheres in stokes flow Phys. Fluids 2020 062001
, ,[7] Justification of lubrication approximation: an application to fluid/solid interactions Asymptotic Anal 2015 187 241
,[8] Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation J. Fluid Mech. 1994 285 309
[9] Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results J. Fluid Mech. 1994 311 339
[10] Local lubrication model for spherical particles within incompressible Navier-Stokes flows Phys. Rev. E 2018 033313
, ,[11] Numerical simulation of suspensions: lubrication correction, including fluid correction Equations aux dérivées partielles et leurs applications Actes du colloque Edp-Normandie. Caen 2017 2017 87 100
[12] An accurate method to include lubrication forces in numerical simulations of dense Stokesian suspensions J. Fluid Mech 2015 369 386
, ,[13] End effects in a falling-sphere viscometer Br. J. Appl. Phys 1961 293
[14] A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows Int. J. Multiphase Flow 2000 1509 1524
, , , ,[15] Inclusion of lubrication forces in dynamic simulations Phys. Fluids 1994 1653 1662
,[16] Simulation of concentrated suspensions using the force-coupling method J. Comput. Phys 2010 2401 2421
,Cité par Sources :