Control of traveling localized spots
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 46.

Voir la notice de l'article provenant de la source EDP Sciences

Traveling localized spots represent an important class of self-organized two-dimensional patterns in reaction–diffusion systems. We study open-loop control intended to guide a stable spot along a desired trajectory with desired velocity. Simultaneously, the spot’s concentration profile does not change under control. For a given protocol of motion, we first express the control signal analytically in terms of the Goldstone modes and the propagation velocity of the uncontrolled spot. Thus, detailed information about the underlying nonlinear reaction kinetics is unnecessary. Then, we confirm the optimality of this solution by demonstrating numerically its equivalence to the solution of a regularized, optimal control problem. To solve the latter, the analytical expressions for the control are excellent initial guesses speeding-up substantially the otherwise time-consuming calculations.
DOI : 10.1051/mmnp/2021036

S. Martens 1 ; C. Ryll 2 ; J. Löber 1, 3 ; F. Tröltzsch 2 ; H. Engel 1

1 Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin, Germany.
2 Technische Universität Berlin, Institut für Mathematik, Str. d. 17. Juni 136, MA 4-5, 10623 Berlin, Germany.
3 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany.
@article{MMNP_2021_16_a8,
     author = {S. Martens and C. Ryll and J. L\"ober and F. Tr\"oltzsch and H. Engel},
     title = {Control of traveling localized spots},
     journal = {Mathematical modelling of natural phenomena},
     eid = {46},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021036},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021036/}
}
TY  - JOUR
AU  - S. Martens
AU  - C. Ryll
AU  - J. Löber
AU  - F. Tröltzsch
AU  - H. Engel
TI  - Control of traveling localized spots
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021036/
DO  - 10.1051/mmnp/2021036
LA  - en
ID  - MMNP_2021_16_a8
ER  - 
%0 Journal Article
%A S. Martens
%A C. Ryll
%A J. Löber
%A F. Tröltzsch
%A H. Engel
%T Control of traveling localized spots
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021036/
%R 10.1051/mmnp/2021036
%G en
%F MMNP_2021_16_a8
S. Martens; C. Ryll; J. Löber; F. Tröltzsch; H. Engel. Control of traveling localized spots. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 46. doi : 10.1051/mmnp/2021036. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021036/

[1] F.T. Arecchi, S. Boccaletti, P. Ramazza Pattern formation and competition in nonlinear optics Phys. Rep 1999 1 83

[2] W. Barthel, C. John, F. Tröltzsch Optimal boundary control of a system of reaction diffusion equations Z. Angew. Math. und Mech 2010 966 982

[3] I.V. Biktasheva, H. Dierckx, V.N. Biktashev Drift of scroll waves in thin layers caused by thickness features: asymptotic theory and numerical simulations Phys. Rev. Lett 2015 068302

[4] R. Buchholz, H. Engel, E. Kammann, F. Tröltzsch On the optimal control of the Schlögl model Comput. Optim. Appl 2013 153 185

[5] A.E. Bryson, Applied optimal control: optimization, estimation and control. CRC Press (1975).

[6] E. Casas, M. Mateos, A. Rösch Improved approximation rates for a parabolic control problem with an objective promoting directional sparsity Comp. Opt. Appl 2018 239 266

[7] E. Casas, C. Ryll, F. Tröltzsch Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems Comp. Meth. Appl. Math 2013 415 442

[8] E. Casas, C. Ryll, F. Tröltzsch Optimal control of a class of reaction diffusion equations Comput. Opt. Appl 2018 677 707

[9] E. Casas, C. Ryll, F. Tröltzsch Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation SIAM J. Control Optim 2015 2168 2202

[10] J.-X. Chen, H. Zhang, Y.-Q. Li Synchronization of a spiral by a circularly polarized electric field in reaction–diffusion systems J. Chem. Phys 2009 124510

[11] S. Coombes, P. Beim Graben, R. Potthast and J. Wright, Neural Fields. Springer-Verlag Berlin Heidelberg (2014).

[12] S.M. Cox, P.C. Matthews J. Comp. Phys 2002 430 455

[13] A. Doelman, P. Van Heijster, T.J. Kaper Pulse dynamics in a three-component system: existence analysis J. Dyn. Differ. Equ 2009 73 115

[14] R. Fitzhugh Impulses and physiological states in theoretical models of nerve membrane Biophys. J 1961 445 466

[15] E. Gilad, J. Von Hardenberg, A. Provenzale, M. Shachak, E. Meron, Ecosystem, Engineers from pattern formation to habitat creation Phys. Rev. Lett 2004

[16] S.V. Gurevich, R. Friedrich Instabilities of localized structures in dissipative systems with delayed feedback Phys. Rev. Lett 2013

[17] S.V. Gurevich, S. Amiranashvili, H.-G. Purwins Breathing dissipative solitons in three-component reaction–diffusion system Phys. Rev. E 2006 066201

[18] S. Gurevich, H. Bödeker, A. Moskalenko, A. Liehr, H.G. Purwins Physica D 2004 115 128

[19] G. Haas, M. Bär, I.G. Kevrekidis, P.B. Rasmussen, H.H. Rotermund, G. Ertl Phys. Rev. Lett 1995 3560

[20] K.-H. Hoffmann, I. Lasiecka, G. Leugering, J. Sprekels and F. Tröltzsch, eds., Optimal Control of Complex Structures. Vol. 139 of ISNM. Birkhäuser Verlag (2002).

[21] K.-H. Hoffmann, G. Leugering and F. Tröltzsch, Optimal Control of Partial Differential Equations. Vol. 133 of ISNM. Birkhäuser Verlag (1998).

[22] B.S. Kerner and V.V. Osipov, Vol. 61 of Autosolitons: a new approach to problems of self-organization and turbulence. Springer Science Business Media (2013).

[23] M. Kim, M. Bertram, M. Pollmann, A. Von Oertzen, A.S. Mikhailov, H.H. Rotermund, G. Ertl Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110) Science 2001 1357

[24] C.R. Laing, W.C. Troy, B. Gutkin, G.B. Ermentrout Multiple bumps in a neuronal model of working memory SIAM J. Appl. Math 2002 62 97

[25] T. Le Goff, B. Liebchen, D. Marenduzzo, Pattern, Formation in polymerizing actin flocks: spirals, spots, and waves without nonlinear chemistry Phys. Rev. Lett 2016 238002

[26] J. Löber, H. Engel Controlling the position of traveling waves in reaction–diffusion systems Phys. Rev. Lett 2014 148305

[27] J. Löber, R. Coles, J. Siebert, H. Engel and E. Schöll, Control of chemical wave propagation, in Engineering of Chemical Complexity II, edited by A. Mikhailov and G. Ertl. World Scientific Singapore (2015).

[28] J. Löber Stability of position control of traveling waves in reaction–diffusion systems Phys. Rev. E 2014 062904

[29] J. Löber, S. Martens, H. Engel Shaping wave patterns in reaction–diffusion systems Phys. Rev. E 2014 062911

[30] O. Lüthje, S. Wolff, G. Pfister Control of chaotic Taylor-Couette flow with time-delayed feedback Phys. Rev. Lett 2001 1745 1748

[31] J. Löber, Control of reaction–diffusion systems. Springer International Publishing, Cham (2017) 195–220.

[32] B. Marwaha, D. Luss Chem. Eng. Sci 2003 733 738

[33] A. Mikhailov, K. Showalter Control of waves, patterns and turbulence in chemical systems Phys. Rep 2006 79 194

[34] A. Mikhailov, L. Schimansky-Geier, W. Ebeling Stochastic motion of the propagating front in bistable media Phys. Lett. A 1983 453 456

[35] Y. Nishiura, T. Teramoto, K.-I. Ueda Scattering of traveling spots in dissipative systems Chaos 2005 047509

[36] Y. Nishiura, T. Teramoto, X. Yuan Heterogeneity-induced spot dynamics for a three-component reaction–diffusion system Comm. Pure Appl. Anal 2011 307 338

[37] V. Odent, E. Louvergneaux, M.G. Clerc, I. Andrade-Silva Optical wall dynamics induced by coexistence of monostable and bistable spatial regions Phys. Rev. E 2016 052220

[38] T. Pierre, G. Bonhomme, A. Atipo Controlling the chaotic regime of nonlinear ionization waves using the time-delay autosynchronization method Phys. Rev. Lett 1996 2290 2293

[39] H.-G. Purwins, H.U. Bödeker and A.W. Liehr, Dissipative solitons in reaction–diffusion systems. Dissipative solitons. Springer (2005) 267–308.

[40] H.-G. Purwins, H. Bödeker, S. Amiranashvili Dissipative solitons Adv. Phys 2010 485 701

[41] L. Qiao, X. Li, I.G. Kevrekidis, C. Punckt, H.H. Rotermund Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation Phys. Rev. E 2008 036214

[42] C. Ryll, J. Löber, S. Martens, H. Engel and F. Tröltzsch, Analytical, optimal, and sparse optimal control of traveling wave solutions to reaction–diffusion systems, in Control of Self-Organizing Nonlinear Systems, edited by E. Schöll, S.H.L. Klapp and P. Hövel. Springer (2016) 189–210.

[43] T. Sakurai, E. Mihaliuk, F. Chirila, K. Showalter Design and control of wave propagation patterns in excitable media Science 2002 2009 2012

[44] J. Schlesner, V. Zykov and H. Engel, Feedback-mediated control of hypermeandering spiral waves, in Handbook of Chaos Control. Wiley-VCH Verlag (2008) 591–607.

[45] A. Schrader, M. Braune, H. Engel Dynamics of spiral waves in excitable media subjected to external periodic forcing Phys. Rev. E 1995 98

[46] O. Steinbock, V.S. Zykov, S.C. Müller Control of spiral-wave dynamics in active media by periodic modulation of excitability Nature 1993 322 324

[47] J.S. Taube, J.P. Bassett Persistent neural activity in head direction cells Cereb. Cortex 2003 1162 1172

[48] S. Totz, J. Löber, J.F. Totz, H. Engel Control of transversal instabilities in reaction–diffusion systems NJP 2018 053034

[49] P. Van Heijster, A. Doelman, T.J. Kaper Pulse dynamics in a three-component system: stability and bifurcations Physica D 2008 3335 3368

[50] V.K. Vanag, I.R. Epstein Design and control of patterns in reaction–diffusion systems Chaos 2008 026107

[51] V.K. Vanag, I.R. Epstein Localized patterns in reaction–diffusion systems Chaos 2007 037110

[52] G.A. Viswanathan, M. Sheintuch, D. Luss Transversal hot zones formation in catalytic packed-bed reactors Ind. Eng. Chem. Res 2008 7509 7523

[53] J. Wolff, A.G. Papathanasiou, I.G. Kevrekidis, H.H. Rotermund, G. Ertl Spatiotemporal addressing of surface activity Science 2001 134 137

[54] J. Wolff, A.G. Papathanasiou, H.H. Rotermund, G. Ertl, X. Li, I.G. Kevrekidis Gentle dragging of reaction waves Phys. Rev. Lett 2003 018302

[55] L. Yang, A.M. Zhabotinsky, I.R. Epstein Jumping solitary waves in an autonomous reaction–diffusion system with subcritical wave instability Phys. Chem. Chem. Phys 2006 4647 4651

[56] A. Ziepke, S. Martens and H. Engel, Control of nonlinear wave solutions to neural field equations. arXiv:1806.10938 (2018).

[57] A. Ziepke, S. Martens, H. Engel Wave propagation in spatially modulated tubes J. Chem. Phys 2016 094108

[58] V.S. Zykov, G. Bordiougov, H. Brandtstädter, I. Gerdes, H. Engel Periodic forcing and feedback control of nonlinear lumped oscillators and meandering spiral waves Phys. Rev. E 2003 016214

[59] V.S. Zykov, G. Bordiougov, H. Brandtstädter, I. Gerdes, H. Engel Global control of spiral wave dynamics in an excitable domain of circular and elliptical shape Phys. Rev. Lett 2004 018304

Cité par Sources :