Voir la notice de l'article provenant de la source EDP Sciences
S. Martens 1 ; C. Ryll 2 ; J. Löber 1, 3 ; F. Tröltzsch 2 ; H. Engel 1
@article{MMNP_2021_16_a8, author = {S. Martens and C. Ryll and J. L\"ober and F. Tr\"oltzsch and H. Engel}, title = {Control of traveling localized spots}, journal = {Mathematical modelling of natural phenomena}, eid = {46}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021036}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021036/} }
TY - JOUR AU - S. Martens AU - C. Ryll AU - J. Löber AU - F. Tröltzsch AU - H. Engel TI - Control of traveling localized spots JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021036/ DO - 10.1051/mmnp/2021036 LA - en ID - MMNP_2021_16_a8 ER -
%0 Journal Article %A S. Martens %A C. Ryll %A J. Löber %A F. Tröltzsch %A H. Engel %T Control of traveling localized spots %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021036/ %R 10.1051/mmnp/2021036 %G en %F MMNP_2021_16_a8
S. Martens; C. Ryll; J. Löber; F. Tröltzsch; H. Engel. Control of traveling localized spots. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 46. doi : 10.1051/mmnp/2021036. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021036/
[1] Pattern formation and competition in nonlinear optics Phys. Rep 1999 1 83
, ,[2] Optimal boundary control of a system of reaction diffusion equations Z. Angew. Math. und Mech 2010 966 982
, ,[3] Drift of scroll waves in thin layers caused by thickness features: asymptotic theory and numerical simulations Phys. Rev. Lett 2015 068302
, ,[4] On the optimal control of the Schlögl model Comput. Optim. Appl 2013 153 185
, , ,[5] A.E. Bryson, Applied optimal control: optimization, estimation and control. CRC Press (1975).
[6] Improved approximation rates for a parabolic control problem with an objective promoting directional sparsity Comp. Opt. Appl 2018 239 266
, ,[7] Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems Comp. Meth. Appl. Math 2013 415 442
, ,[8] Optimal control of a class of reaction diffusion equations Comput. Opt. Appl 2018 677 707
, ,[9] Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation SIAM J. Control Optim 2015 2168 2202
, ,[10] Synchronization of a spiral by a circularly polarized electric field in reaction–diffusion systems J. Chem. Phys 2009 124510
, ,[11] S. Coombes, P. Beim Graben, R. Potthast and J. Wright, Neural Fields. Springer-Verlag Berlin Heidelberg (2014).
[12] J. Comp. Phys 2002 430 455
,[13] Pulse dynamics in a three-component system: existence analysis J. Dyn. Differ. Equ 2009 73 115
, ,[14] Impulses and physiological states in theoretical models of nerve membrane Biophys. J 1961 445 466
[15] from pattern formation to habitat creation Phys. Rev. Lett 2004
, , , , , ,[16] Instabilities of localized structures in dissipative systems with delayed feedback Phys. Rev. Lett 2013
,[17] Breathing dissipative solitons in three-component reaction–diffusion system Phys. Rev. E 2006 066201
, ,[18] Physica D 2004 115 128
, , , ,[19] Phys. Rev. Lett 1995 3560
, , , , ,[20] K.-H. Hoffmann, I. Lasiecka, G. Leugering, J. Sprekels and F. Tröltzsch, eds., Optimal Control of Complex Structures. Vol. 139 of ISNM. Birkhäuser Verlag (2002).
[21] K.-H. Hoffmann, G. Leugering and F. Tröltzsch, Optimal Control of Partial Differential Equations. Vol. 133 of ISNM. Birkhäuser Verlag (1998).
[22] B.S. Kerner and V.V. Osipov, Vol. 61 of Autosolitons: a new approach to problems of self-organization and turbulence. Springer Science Business Media (2013).
[23] Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110) Science 2001 1357
, , , , , ,[24] Multiple bumps in a neuronal model of working memory SIAM J. Appl. Math 2002 62 97
, , ,[25] in polymerizing actin flocks: spirals, spots, and waves without nonlinear chemistry Phys. Rev. Lett 2016 238002
, , , ,[26] Controlling the position of traveling waves in reaction–diffusion systems Phys. Rev. Lett 2014 148305
,[27] J. Löber, R. Coles, J. Siebert, H. Engel and E. Schöll, Control of chemical wave propagation, in Engineering of Chemical Complexity II, edited by A. Mikhailov and G. Ertl. World Scientific Singapore (2015).
[28] Stability of position control of traveling waves in reaction–diffusion systems Phys. Rev. E 2014 062904
[29] Shaping wave patterns in reaction–diffusion systems Phys. Rev. E 2014 062911
, ,[30] Control of chaotic Taylor-Couette flow with time-delayed feedback Phys. Rev. Lett 2001 1745 1748
, ,[31] J. Löber, Control of reaction–diffusion systems. Springer International Publishing, Cham (2017) 195–220.
[32] Chem. Eng. Sci 2003 733 738
,[33] Control of waves, patterns and turbulence in chemical systems Phys. Rep 2006 79 194
,[34] Stochastic motion of the propagating front in bistable media Phys. Lett. A 1983 453 456
, ,[35] Scattering of traveling spots in dissipative systems Chaos 2005 047509
, ,[36] Heterogeneity-induced spot dynamics for a three-component reaction–diffusion system Comm. Pure Appl. Anal 2011 307 338
, ,[37] Optical wall dynamics induced by coexistence of monostable and bistable spatial regions Phys. Rev. E 2016 052220
, , ,[38] Controlling the chaotic regime of nonlinear ionization waves using the time-delay autosynchronization method Phys. Rev. Lett 1996 2290 2293
, ,[39] H.-G. Purwins, H.U. Bödeker and A.W. Liehr, Dissipative solitons in reaction–diffusion systems. Dissipative solitons. Springer (2005) 267–308.
[40] Dissipative solitons Adv. Phys 2010 485 701
, ,[41] Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation Phys. Rev. E 2008 036214
, , , ,[42] C. Ryll, J. Löber, S. Martens, H. Engel and F. Tröltzsch, Analytical, optimal, and sparse optimal control of traveling wave solutions to reaction–diffusion systems, in Control of Self-Organizing Nonlinear Systems, edited by E. Schöll, S.H.L. Klapp and P. Hövel. Springer (2016) 189–210.
[43] Design and control of wave propagation patterns in excitable media Science 2002 2009 2012
, , ,[44] J. Schlesner, V. Zykov and H. Engel, Feedback-mediated control of hypermeandering spiral waves, in Handbook of Chaos Control. Wiley-VCH Verlag (2008) 591–607.
[45] Dynamics of spiral waves in excitable media subjected to external periodic forcing Phys. Rev. E 1995 98
, ,[46] Control of spiral-wave dynamics in active media by periodic modulation of excitability Nature 1993 322 324
, ,[47] Persistent neural activity in head direction cells Cereb. Cortex 2003 1162 1172
,[48] Control of transversal instabilities in reaction–diffusion systems NJP 2018 053034
, , ,[49] Pulse dynamics in a three-component system: stability and bifurcations Physica D 2008 3335 3368
, ,[50] Design and control of patterns in reaction–diffusion systems Chaos 2008 026107
,[51] Localized patterns in reaction–diffusion systems Chaos 2007 037110
,[52] Transversal hot zones formation in catalytic packed-bed reactors Ind. Eng. Chem. Res 2008 7509 7523
, ,[53] Spatiotemporal addressing of surface activity Science 2001 134 137
, , , ,[54] Gentle dragging of reaction waves Phys. Rev. Lett 2003 018302
, , , , ,[55] Jumping solitary waves in an autonomous reaction–diffusion system with subcritical wave instability Phys. Chem. Chem. Phys 2006 4647 4651
, ,[56] A. Ziepke, S. Martens and H. Engel, Control of nonlinear wave solutions to neural field equations. arXiv:1806.10938 (2018).
[57] Wave propagation in spatially modulated tubes J. Chem. Phys 2016 094108
, ,[58] Periodic forcing and feedback control of nonlinear lumped oscillators and meandering spiral waves Phys. Rev. E 2003 016214
, , , ,[59] Global control of spiral wave dynamics in an excitable domain of circular and elliptical shape Phys. Rev. Lett 2004 018304
, , , ,Cité par Sources :