On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 41.

Voir la notice de l'article provenant de la source EDP Sciences

Many dynamic systems can be modeled by fractional differential equations in which some external parameters occur under uncertainty. Although these parameters increase the complexity, they present more acceptable solutions. With the aid of Atangana-Baleanu-Caputo (ABC) fractional differential operator, an advanced numerical-analysis approach is considered and applied in this work to deal with different classes of fuzzy integrodifferential equations of fractional order fitted with uncertain constraints conditions. The fractional derivative of ABC is adopted under the generalized H-differentiability (g-HD) framework, which uses the Mittag-Leffler function as a nonlocal kernel to better describe the timescale of the fuzzy models. Towards this end, applications of reproducing kernel algorithm are extended to solve classes of linear and nonlinear fuzzy fractional ABC Volterra-Fredholm integrodifferential equations. Based on the characterization theorem, preconditions are established under the Lipschitz condition to characterize the fuzzy solution in a coupled equivalent system of crisp ABC integrodifferential equations. Parametric solutions of the ABC interval are provided in terms of rapidly convergent series in Sobolev spaces. Several examples of fuzzy ABC Volterra-Fredholm models are implemented in light of g-HD to demonstrate the feasibility and efficiency of the designed algorithm. Numerical and graphical representations of both classical Caputo and ABC fractional derivatives are presented to show the effect of the ABC derivative on the parametric solutions of the posed models. The achieved results reveal that the proposed method is systematic and suitable for dealing with the fuzzy fractional problems arising in physics, technology, and engineering in terms of the ABC fractional derivative.
DOI : 10.1051/mmnp/2021030

Mohammed Al-Smadi 1, 2 ; Hemen Dutta 3 ; Shatha Hasan 1 ; Shaher Momani 2, 4

1 Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan.
2 Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE.
3 Department of Mathematics, Gauhati University, Gawahati, 781 014 Assam, India.
4 Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan.
@article{MMNP_2021_16_a19,
     author = {Mohammed Al-Smadi and Hemen Dutta and Shatha Hasan and Shaher Momani},
     title = {On numerical approximation of {Atangana-Baleanu-Caputo} fractional integro-differential equations under uncertainty in {Hilbert} {Space}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {41},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021030},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021030/}
}
TY  - JOUR
AU  - Mohammed Al-Smadi
AU  - Hemen Dutta
AU  - Shatha Hasan
AU  - Shaher Momani
TI  - On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021030/
DO  - 10.1051/mmnp/2021030
LA  - en
ID  - MMNP_2021_16_a19
ER  - 
%0 Journal Article
%A Mohammed Al-Smadi
%A Hemen Dutta
%A Shatha Hasan
%A Shaher Momani
%T On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021030/
%R 10.1051/mmnp/2021030
%G en
%F MMNP_2021_16_a19
Mohammed Al-Smadi; Hemen Dutta; Shatha Hasan; Shaher Momani. On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 41. doi : 10.1051/mmnp/2021030. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021030/

[1] R. Agarwal, V. Lakshmikantham, J. Nieto On the concept of solution for fractional differential equations with uncertainty Nonlinear Anal 2010 2859 2862

[2] M. Alabedalhadi, M. Al-Smadi, S. Al-Omari, D. Baleanu, S. Momani Structure of optical soliton solution for nonliear resonant space-time Schrödinger equation in conformable sense with full nonlinearity term Phys. Scr 2020 105215

[3] M. Al-Smadi Reliable numerical algorithm for handling fuzzy integral equations of second kind in Hilbert spaces Filomat 2019 583 597

[4] T. Allahviranloo, B. Ghanbari On the fuzzy fractional differential equation with interval Atangana–Baleanu fractional derivative approach Chaos Solitons Fract 2020 109397

[5] T. Allahviranloo, S. Salahshour, S. Abbasbandy Explicit solutions of fractional differential equations with uncertainty Soft Comput 2012 297 302

[6] G.A. Anastassiou, Fuzzy mathematics: approximation theory. Vol. 251 of Studies in Fuzziness and Soft Computing. Springer, Berlin, Heidelberg (2010).

[7] M. Al-Smadi, Fractional residual series for conformable time-fractional Sawada-Kotera-Ito, Lax, and Kaup-Kupershmidt equations of seventh-order. Math. Methods Appl. Sci. (2021). DOI: 10.1002/mma.7507.

[8] M. Al-Smadi Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation Ain Shams Eng. J 2018 2517 2525

[9] M. Al-Smadi, O. Abu Arqub Computational algorithm for solving Fredholm time-fractional partial integrodifferential equationsof Dirichlet functions type with error estimates Appl. Math. Comput 2019 280 294

[10] M. Al-Smadi, O. Abu Arqub, S. Momani A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equations Math. Probl. Eng 2013 832074

[11] M. Al-Smadi, O. Abu Arqub, D. Zeidan Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: theorems and applications Chaos Solitons Fract 2021 110891

[12] M. Al-Smadi, O. Abu Arqub, S. Hadid Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method Phys. Scr 2020 105205

[13] M. Al-Smadi, O. Abu Arqub, S. Hadid An attractive analytical technique for coupled system of fractional partial differential equationsin shallow water waves with conformable derivative Commun. Theor. Phys 2020 085001

[14] M. Al-Smadi, O. Abu Arqub and M. Gaith, Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework. Math. Methods Appl. Sci. (2020). DOI: 10.1002/mma.6998.

[15] M. Al-Smadi, O. Abu Arqub, S. Momani Numerical computations of coupled fractional resonant Schrödinger equations arising inquantum mechanics under conformable fractional derivative sense Phys. Scr 2020 075218

[16] M. Al-Smadi, O. Abu Arqub, N. Shawagfeh, S. Momani Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method Appl. Math. Comput 2016 137 148

[17] M. Al-Smadi, A. Freihat, H. Khalil, S. Momani, R.A. Khan Numerical multistep approach for solving fractional partial differential equations Int. J. Comput. Methods 2017 1750029

[18] N. Aronszajn Theory of reproducing kernels Trans. Am. Math. Soc 1950 337 404

[19] A. Atangana On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation Appl. Math. Comput 2016 948 956

[20] A. Atangana, D. Baleanu Nonlinear fractional Jaulent-Miodek and Whitham-Broer-Kaup equations within Sumudu transform Abstr. Appl. Anal 2013 160681

[21] A. Atangana, D. Baleanu New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model Thermal Sci 2016 763 769

[22] A. Atangana, J.F. Gómez-Aguilar, M.O. Kolade, J.Y. Hristov Fractional differential and integral operators with non-singular and non-local kernel with application to nonlinear dynamical systems Chaos Solitons Fract 2020 109493

[23] D. Baleanu, A. Fernandez On some new properties of fractional derivatives with Mittag-Leffler kernel Commun. Nonlinear Sci. Numer. Simul 2018 444 462

[24] B. Bede, L. Stefanini Generalized differentiability of fuzzy valued functions Fuzzy Sets Syst 2013 119 141

[25] M. Caputo, M. Fabrizio A new definition of fractional derivative without singular Kernel Progr. Fract. Differ. Appl 2015 73 85

[26] M. Cui and Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science, New York, NY, USA (2009).

[27] P. Diamond, P. Kloeden Towards the theory of fuzzy differential equations Fuzzy Sets Syst 1999 63 71

[28] N. Djeddi, S. Hasan, M. Al-Smadi, S. Momani Modified analytical approach for generalized quadratic and cubic logistic models with Caputo-Fabrizio fractional derivative Alexandria Eng. J 2020 5111 5122

[29] D. Dubois, H. Prade Operations on fuzzy numbers Int. J. Syst. Sci 1978 613 626

[30] D. Dubois, H. Prade Towards fuzzy differential calculus: Part 3. Differentiation Fuzzy Sets Syst. 1982 225 233

[31] H. Dutta, A. Akdemir and A. Atangana, Fractional order analysis: theory, methods and applications. John Wiley and Sons Ltd, Hoboken, USA (2020).

[32] M. Friedman, M. Ma, A. Kandel Numerical solutions of fuzzy differential and integral equations Fuzzy Sets Syst 1999 35 48

[33] R. Goetschel, W. Voxman Elementary fuzzy calculus Fuzzy Sets Syst 1986 31 43

[34] H. Günerhan, H. Dutta, M.A. Dokuyucu, W. Adel Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators Chaos Solitons Fract 2020 110053

[35] N. Harrouche, S. Momani, S. Hasan, M. Al-Smadi Computational algorithm for solving drug pharmacokinetic model under uncertainty with nonsingular kernel type Caputo-Fabrizio fractional derivative Alexandria Eng. J 2021 4347 4362

[36] S. Hasan, M. Al-Smadi, A. El-Ajou, S. Momani, S. Hadid, Z. Al-Zhour Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system Chaos Solitons Fract 2021 110506

[37] S. Hasan, M. Al-Smadi, A. Freihet, S. Momani Two computational approaches for solving a fractional obstacle system in Hilbert space Adv. Differ. Equ 2019 55

[38] S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momani Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system Chaos Solitons Fract 2019 109624

[39] J. Hristov Response functions in linear viscoelastic constitutive equations and related fractional operators Math. Model. Nat. Phenom 2019 305

[40] O. Kaleva Fuzzy differential equations Fuzzy Sets Syst 1987 301 317

[41] A. Kandel, W. Byatt Fuzzy differential equations Proc. Int. Conf. Cybern. Soc 1978 1213 1216

[42] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations. Vol. 204 of em North-Holland Mathematics Studies. Elsevier Science (2006).

[43] S. Kumar, A. Kumar, B. Samet, H. Dutta A study on fractional host-parasitoid population dynamical model to describe insect species Numer. Methods Partial Differ. Equ 2021 1673 1692

[44] D. Kumar, J. Singh, D. Baleanu On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law Math. Methods Appl. Sci 2020 443 457

[45] C.C. Lee Fuzzy logic in control systems Fuzzy Logic Control 1990 404 18

[46] S. Momani, O. Abu Arqub, A. Freihat, M. Al-Smadi Analytical approximations for Fokker-Planck equations of fractional order in multistep schemes Appl. Comput. Math 2016 319 330

[47] M. Puri, D. Ralescu Fuzzy random variables J. Math. Anal. Appl 1986 409 422

[48] S. Salahshour, T. Allahviranloo, S. Abbasbandy, D. Baleanu Existence and uniqueness results for fractional differential equations with uncertainty Adv. Differ. Equ 2012 112

[49] J. Singh, A. Ahmadian, S. Rathore, D. Kumar, D. Baleanu, M. Salimi, S. Salahshour An efficient computational approach for local fractional poisson equation in fractal media Numer. Methods Partial Differ. Equ 2021 1439 1448

[50] J. Singh, H.K. Jassim, D. Kumar An efficient computational technique for local fractional Fokker Planck equation Physica A 2020 124525

[51] M. Yavuz Characterizations of two different fractional operators without singular kernel Math. Model. Nat. Phenom 2019 302

[52] M. Yavuz Fundamental solutions to the Cauchy and Dirichlet problems for a heat conduction equation equipped with the Caputo−Fabrizio differentiation Heat Conduct 2019 95 107

[53] M. Yavuz, European option pricing models described by fractional operators with classical and generalized Mittag-Leffler kernels. Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22645.

[54] M. Yavuz, T. Abdeljawad Nonlinear regularized long-wave models with a new integral transformation applied to the fractionalderivative with power and Mittag-Leffler kernel Adv. Differ. Equ 2020 367

[55] L. Zadeh Fuzzy sets Inf. Control 1965 338 353

[56] J. Zhang, G. Wang, X. Zhi, C. Zhou Generalized Euler-Lagrange equations for fuzzy fractional variational problems under gH-Atangana-Baleanu differentiability J. Funct. Spaces 2018 2740678

Cité par Sources :