An extremal problem with applications to renewable energy production
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 37.

Voir la notice de l'article provenant de la source EDP Sciences

Dynamic optimisation provides complex challenges for optimal solution, but greatly increases applicability when considering time dependent situations. In this work, a constrained dynamic optimisation problem is analysed and subsequently applied to the resolution of a real-world engineering problem concerning Solar Power Tower plants. We study the existence of solutions and deduce an appropriate optimality characterisation in this applied framework. Two iterative algorithms are presented, convergence properties are discussed and a numerical illustration is given utilising realistic data. Finally, conclusions are drawn on the considered model and some ideas for future work are discussed.
DOI : 10.1051/mmnp/2021029

Thomas Ashley 1 ; Emilio Carrizosa 1 ; Enrique Fernández-Cara 2

1 IMUS – Instituto de Matemáticas de la Universidad de Sevilla, Seville, Spain.
2 Dep. EDAN and IMUS, Universidad de Sevilla, Seville, Spain.
@article{MMNP_2021_16_a52,
     author = {Thomas Ashley and Emilio Carrizosa and Enrique Fern\'andez-Cara},
     title = {An extremal problem with applications to renewable energy production},
     journal = {Mathematical modelling of natural phenomena},
     eid = {37},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021029},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021029/}
}
TY  - JOUR
AU  - Thomas Ashley
AU  - Emilio Carrizosa
AU  - Enrique Fernández-Cara
TI  - An extremal problem with applications to renewable energy production
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021029/
DO  - 10.1051/mmnp/2021029
LA  - en
ID  - MMNP_2021_16_a52
ER  - 
%0 Journal Article
%A Thomas Ashley
%A Emilio Carrizosa
%A Enrique Fernández-Cara
%T An extremal problem with applications to renewable energy production
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021029/
%R 10.1051/mmnp/2021029
%G en
%F MMNP_2021_16_a52
Thomas Ashley; Emilio Carrizosa; Enrique Fernández-Cara. An extremal problem with applications to renewable energy production. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 37. doi : 10.1051/mmnp/2021029. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021029/

[1] T. Ashley, E. Carrizosa and E. Fernández-Cara, Optimisation of aiming strategies in Solar Power Tower plants. Energy (2017).

[2] T. Ashley, E. Carrizosa and E. Fernández-Cara, Continuous Optimisation Techniques for Optimal Aiming Strategies in Solar Power Tower Plants (Submitted) (2018).

[3] T. Ashley, E. Carrizosa, E. Fernández-Cara Heliostat field cleaning scheduling for Solar Power Tower plants: a heuristic approach Appl. Energy 2019 653 660

[4] M. Astolfi, M. Binotti, S. Mazzola, L. Zanellato, G. Manzolini Heliostat aiming point optimization for external tower receiver Solar Energy 2017 1114 1129

[5] R. Braun, C. Diep, W.T. Hamilton, M.J. Wagner, J. Dent, A. Newman Optimizing dispatch for a concentrated solar power tower Solar Energy 2018 1198 1211

[6] D.P. Clarke, Y.M. Al-Abdeli, G. Kothapalli Multi-objective optimisation of renewable hybrid energy systems with desalination Energy 2015 457 468

[7] I. Ekeland and R. Temam, Convex analysis and variational problems. Elsevier (1976).

[8] R. Evins A review of computational optimisation methods applied to sustainable building design Renew. Sustain. Energy Rev 2013 230 245

[9] O. Farges, J.J. Bézian, M. El Hafi Global optimization of solar power tower systems using a Monte Carlo algorithm: application to a redesign of the PS10 solar thermal power plant Renew. Energy 2018 345 353

[10] I.V. Girsanov, Lectures on mathematical theory of extremum problems. Springer-Verlag, Berlin-New York (1972).

[11] F. Kheiri A review on optimization methods applied in energy-efficient building geometry and envelope design Renew. Sustain. Energy Rev 2018 897 920

[12] Z. Liu, H. Liu Several efficient gradient methods with approximate optimal stepsizes for large scale unconstrained optimization J. Comput. Appl. Math 2018 400 413

[13] M. Mansour, J.E. Ellis Methodology of on-line optimization applied to a chemical reactor Appl. Math. Model 2008 170 184

[14] G.P. Mccormick A modification of Armijo’s step-size rule for negative curvature Math. Program 1977 111 115

[15] J. Nocedal, S.J. Wright and S.M. Robinson, Numerical Optimization, Springer, 1 ed. (1999).

[16] V. Pillac, M. Gendreau, C. Guéret, A.L. Medaglia A review of dynamic vehicle routing problems Eur. J. Operat. Res 2013 1 11

[17] S. Relloso, E. García Tower technology cost reduction approach after Gemasolar experience Energy Proc 2015 1660 1666

[18] V. Schmid Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming Eur. J. Oper. Res 2012 611 621

[19] K. Wang, Y.-L. He, X.-D. Xue, B.-C. Du Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm Appl. Energy 2017 399 416

[20] Q. Yu, Z. Wang, E. Xu Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field Appl. Energy 2014 417 430

Cité par Sources :