Fair insurance premium rate in connected SEIR model under epidemic outbreak
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 34.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we aim to determine an optimal insurance premium rate for health-care in deterministic and stochastic SEIR models. The studied models consider two standard SEIR centres characterised by migration fluxes and vaccination of population. The premium is calculated using the basic equivalence principle. Even in this simple set-up, there are non-intuitive results that illustrate how the premium depends on migration rates, the severity of a disease and the initial distribution of healthy and infected individuals through the centres. We investigate how the vaccination program affects the insurance costs by comparing the savings in benefits with the expenses for vaccination. We compare the results of deterministic and stochastic models.
DOI : 10.1051/mmnp/2021028

Alexey A. Chernov 1 ; Aleksandr A. Shemendyuk 2 ; Mark Y. Kelbert 1

1 National Research University Higher School of Economics, Laboratory of Stochastic Analysis and its Applications, Moscow, Russia.
2 University of Lausanne, Department of Actuarial Science, Lausanne, Switzerland.
@article{MMNP_2021_16_a32,
     author = {Alexey A. Chernov and Aleksandr A. Shemendyuk and Mark Y. Kelbert},
     title = {Fair insurance premium rate in connected {SEIR} model under epidemic outbreak},
     journal = {Mathematical modelling of natural phenomena},
     eid = {34},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021028},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021028/}
}
TY  - JOUR
AU  - Alexey A. Chernov
AU  - Aleksandr A. Shemendyuk
AU  - Mark Y. Kelbert
TI  - Fair insurance premium rate in connected SEIR model under epidemic outbreak
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021028/
DO  - 10.1051/mmnp/2021028
LA  - en
ID  - MMNP_2021_16_a32
ER  - 
%0 Journal Article
%A Alexey A. Chernov
%A Aleksandr A. Shemendyuk
%A Mark Y. Kelbert
%T Fair insurance premium rate in connected SEIR model under epidemic outbreak
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021028/
%R 10.1051/mmnp/2021028
%G en
%F MMNP_2021_16_a32
Alexey A. Chernov; Aleksandr A. Shemendyuk; Mark Y. Kelbert. Fair insurance premium rate in connected SEIR model under epidemic outbreak. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 34. doi : 10.1051/mmnp/2021028. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021028/

[1] C.L. Althaus Estimating the reproduction number of Ebola virus (EBOV) duringthe 2014 outbreak in West Africa PLOS Curr. Outbreaks 2014

[2] O.M. Araz, A. Galvani, L.A. Meyers Geographic prioritization of distributing pandemic influenza vaccines Health Care Manag. Sci 2012 175 187

[3] N.T. Bailey, Mathematical Theory of Epidemics, Charles Griffin (1957).

[4] E. Bakare, A. Nwagwo, E. Danso-Addo Optimal control analysis of an SIR epidemic model with constant recruitment Int. J. Appl. Math. Res 2014

[5] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Society for Industrial and Applied Mathematics (1994).

[6] D. Bernoulli Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir Mémoires de mathématique et de physique, presentés à l’Académie royale des sciences, par divers sçavans & lûs dans ses assemblées 1760 1 45

[7] B. Bolker, B.T. Grenfel Space, persistence and dynamics of measles epidemics Philos. Trans. Royal Soc. London B 1995 309 320

[8] J. Burton, L. Billings, D.A. Cummings, I.B. Schwartz Disease persistence in epidemiological models: the interplay between vaccination and migration Math. Biosci 2012 91 96

[9] A.A. Chernov, M.Y. Kelbert, A.A. Shemendyuk Optimal vaccine allocation during the mumps outbreak in two SIR centres Math. Med. Biol 2019 303 312

[10] D.J. Daley and J. Gani, Epidemic Modelling: An Introduction. Cambridge Studies in Mathematical Biology, Cambridge University Press (1999).

[11] O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382

[12] L.E. Duijzer, W.L. Van Jaarsveld, J. Wallinga, R. Dekker Dose-optimal vaccine allocation over multiple populations Prod. Oper. Manag 2018 143 159

[13] R. Feng, J. Garrido Actuarial applications of epidemiological models North Am. Actuarial J 2011

[14] N. Ferguson, D. Laydon, G. Nedjati Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunuba Perez, G. Cuomo-Dannenburg, A. Dighe, I. Dorigatti, H. Fu, K. Gaythorpe, W. Green, A. Hamlet, W. Hinsley, L. Okell, S. Van Elsland, H. Thompson, R. Verity, E. Volz, H. Wang, Y. Wang, P. Walker, P. Winskill, C. Whittaker, C. Donnelly, S. Riley and A. Ghani, Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand, report, Imperial College London, March 2020.

[15] P.E.M. Fine Herd immunity: history, theory, practice Epidemiolog. Rev 1993 265 302

[16] W. Gleißner The spread of epidemics Appl. Math. Comput 1988 167 171

[17] E. Goldstein, A. Apolloni, B. Lewis, J.C. Miller, M. Macauley, S. Eubank, M. Lipsitch, J. Wallinga Distribution of vaccine/antivirals and the ’least spread line’ in a stratified population J. Roy. Soc. Interface 2010 755 764

[18] H.W. Hethcote An immunization model for a heterogeneous population Theor. Popul. Biol 1978 338 349

[19] W.O. Kermack, A.G. Mckendrick A contribution to the mathematical theory of epidemics Proc. Roy. Soc. A 1927 700 721

[20] M. Kretzschmar, P.F.M. Teunis, R.G. Pebody Incidence and reproduction numbers of pertussis: estimates from serological and social contact data in five European countries PLOS Med 2010 1 10

[21] S. Lee, M. Golinski, G. Chowell Modeling optimal age-specific vaccination strategies against pandemic influenza Bull. Math. Biol 2012 958 980

[22] C. Lefèvre, P. Picard, M. Simon Epidemic risk and insurance coverage J. Appl. Probab 2017 286 303

[23] Y. Liu, A.A. Gayle, A. Wilder-Smith, J. Rocklöv The reproductive number of COVID-19 is higher compared to SARS coronavirus J. Travel Med 2020 taaa021

[24] I.M. Longini, E. Ackerman, L.R. Elveback An optimization model for influenza a epidemics Math. Biosci 1978 141 157

[25] G. Macdonald, The epidemiology and control of malaria. Oxford University Press, London (1957).

[26] M. Martcheva, An Introduction to Mathematical Epidemiology. Springer US (2015).

[27] L. Matrajt, M.E. Halloran, I.M. Longini Optimal vaccine allocation for the early mitigation of pandemic influenza PLOS Comput. Biol 2013 1 15

[28] L. Matrajt, I.M. Longini Optimizing vaccine allocation at different points in time during an epidemic PLOS ONE 2010 1 11

[29] S.D. Mylius, T.J. Hagenaars, A.K. Lugnér, J. Wallinga Optimal allocation of pandemic influenza vaccine depends on age, risk and timing Vaccine 2008 3742 3749

[30] A. Reich Properties of premium calculation principles Insurance 1986 97 101

[31] J. Riou, C.L. Althaus Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020 Eurosurveillance 2020

[32] R. Ross, The Prevention of Malaria, John Murray Publishing House, London (1910).

[33] I. Sazonov, M. Kelbert, M.B. Gravenor A two-stage model for the SIR outbreak: Accounting for the discrete and stochastic nature of the epidemic at the initial contamination stage Math. Biosci 2011 108 117

[34] I. Sazonov, M. Kelbert, M.B. Gravenor A new view on migration processes between SIR centra: an account of the different dynamics of host and guest J. Infect. Non Infect. Dis 2015

[35] P. Van Den Driessche Reproduction numbers of infectious disease models Infect. Disease Model 2017 288 303

[36] P. Van Den Driessche, J. Watmough Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci 2002 29 48

[37] E.C. Yuan, D.L. Alderson, S. Stromberg, J.M. Carlson Optimal vaccination in a stochastic epidemic model of two non-interacting populations PLOS ONE 2015 1 25

Cité par Sources :