Voir la notice de l'article provenant de la source EDP Sciences
M.A. Aziz-Alaoui 1, 2, 3 ; F. Najm 4 ; R. Yafia 4
@article{MMNP_2021_16_a45, author = {M.A. Aziz-Alaoui and F. Najm and R. Yafia}, title = {SIARD model and effect of lockdown on the dynamics of {COVID-19} disease with non total immunity}, journal = {Mathematical modelling of natural phenomena}, eid = {31}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021025}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021025/} }
TY - JOUR AU - M.A. Aziz-Alaoui AU - F. Najm AU - R. Yafia TI - SIARD model and effect of lockdown on the dynamics of COVID-19 disease with non total immunity JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021025/ DO - 10.1051/mmnp/2021025 LA - en ID - MMNP_2021_16_a45 ER -
%0 Journal Article %A M.A. Aziz-Alaoui %A F. Najm %A R. Yafia %T SIARD model and effect of lockdown on the dynamics of COVID-19 disease with non total immunity %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021025/ %R 10.1051/mmnp/2021025 %G en %F MMNP_2021_16_a45
M.A. Aziz-Alaoui; F. Najm; R. Yafia. SIARD model and effect of lockdown on the dynamics of COVID-19 disease with non total immunity. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 31. doi : 10.1051/mmnp/2021025. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021025/
[1] R.M. Anderson and R.M. May, Infectious Diseases of Humans. Oxford University Press (1991).
[2] F. Brauer and C. Castillo-Chavezv, Mathematical Models in Population Biology and Epidemiology. Springer (2001).
[3] Time kinetics of viral clearance and resolution of symptoms in novel coronavirus infection Am. J. Respirat. Critical Care Med 2020 1150 1152
[4] O. Diekmann and J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley (2000).
[5] On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382
, ,[6] O. Diekmann and J.A.P. Heesterbeek, Mathematical epidemiology of infectious diseases : model building, analysis and interpretation. Wiley (2000).
[7] Asymptomatic reinfection in two healthcare workers from India with genetically distinct SARS-CoV-2 2020
, , , , ,[8] A contribution to the mathematical theory of epidemics Proc. Roy. Soc. A: Math. Phys. Eng. Sci 1927 700 721
,[9] Positive RT-PCR test results in patients recovered from COVID-19 JAMA 2020 1502 1503
, ,[10] Sensitivity analysis of parameters in a competition model Appl. Comput. Math 2015 363 368
,[11] Three quarters of people with SARS-CoV-2 infection are asymptomatic: analysis of English household survey data Clin. Epidemiol 2020 1039 1043
,[12] COVID-19 ReInfection by a Phylogenetically Distinct SARS-CoV-2 Variant, First Confirmed Event in South America SSRN 2020
, , , , ,[13] Stochastic SIRC epidemic model with time-delay for COVID-19 Adv Differ Equ 2020 502
, ,[14] Persistence and extinction for stochastic delay differential model of prey predator system with hunting cooperation in predators Adv. Differ. Equ 2020 124
,[15] Genomic evidence for a case of reinfection with SARS-CoV-2 SSRN Electr. J 2020 1 7
[16] COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing Clin. Infectious Dis 2020
, , , , ,[17] Symptomatic SARS-CoV-2 reinfection by a phylogenetically distinct strain Clin. Infectious Dis 2020
, , , , ,[18] Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci 2002 29 48
,Cité par Sources :