Optimal intervention strategies of staged progression HIV infections through an age-structured model with probabilities of ART drop out
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 30.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we construct a model to describe the transmission of HIV in a homogeneous host population. By considering the specific mechanism of HIV, we derive a model structured in three successive stages: (i) primary infection, (ii) long phase of latency without symptoms, and (iii) AIDS. Each HIV stage is stratified by the duration for which individuals have been in the stage, leading to a continuous age-structure model. In the first part of the paper, we provide a global analysis of the model depending upon the basic reproduction number ℜ0. When ℜ0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable and the infection is cleared in the host population. On the contrary, if ℜ0 > 1, we prove the epidemic’s persistence with the asymptotic stability of the endemic equilibrium. By performing the sensitivity analysis, we then determine the impact of control-related parameters on the outbreak severity. For the second part, the initial model is extended with intervention methods. By taking into account antiretroviral therapy (ART) interventions and the probability of treatment drop out, we discuss optimal intervention methods which minimize the number of AIDS cases.
DOI : 10.1051/mmnp/2021024

Mboya Ba 1 ; Ramsès Djidjou-Demasse 2 ; Mountaga Lam 1 ; Jean-Jules Tewa 3

1 University Cheikh Anta Diop, Department of Mathematics and Informatics, Faculty of Science and Technic, Dakar, Sénégal.
2 MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France.
3 University of Yaounde I, National Advanced School of Engineering, Yaoundé, Cameroon.
@article{MMNP_2021_16_a31,
     author = {Mboya Ba and Rams\`es Djidjou-Demasse and Mountaga Lam and Jean-Jules Tewa},
     title = {Optimal intervention strategies of staged progression {HIV} infections through an age-structured model with probabilities of {ART} drop out},
     journal = {Mathematical modelling of natural phenomena},
     eid = {30},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021024},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021024/}
}
TY  - JOUR
AU  - Mboya Ba
AU  - Ramsès Djidjou-Demasse
AU  - Mountaga Lam
AU  - Jean-Jules Tewa
TI  - Optimal intervention strategies of staged progression HIV infections through an age-structured model with probabilities of ART drop out
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021024/
DO  - 10.1051/mmnp/2021024
LA  - en
ID  - MMNP_2021_16_a31
ER  - 
%0 Journal Article
%A Mboya Ba
%A Ramsès Djidjou-Demasse
%A Mountaga Lam
%A Jean-Jules Tewa
%T Optimal intervention strategies of staged progression HIV infections through an age-structured model with probabilities of ART drop out
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021024/
%R 10.1051/mmnp/2021024
%G en
%F MMNP_2021_16_a31
Mboya Ba; Ramsès Djidjou-Demasse; Mountaga Lam; Jean-Jules Tewa. Optimal intervention strategies of staged progression HIV infections through an age-structured model with probabilities of ART drop out. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 30. doi : 10.1051/mmnp/2021024. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021024/

[1] Aide Suisse Contre le SIDA. (2018). Evolution d’une infection par le VIH. www.aids.ch/fr/vivre-avec-vih/aspects-medicaux/evolution.php.

[2] AIDS info. (2018). Offering Information on HIV/AIDS Treatment, Prevention and Research. aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/51/hiv-treatment–the-basics..

[3] S. Anita, Vol. 11 of Analysis and control of age-dependent population dynamics. Springer Science Business Media (2000).

[4] V. Barbu, M. Iannelli Optimal control of population dynamics J. Optim. Theory Appl 1999 1 14

[5] T. Bernard, K. Diop and P. Vinard, The cost of universal free access for treating HIV/AIDS in low-income countries: the case of Senegal (2008). http://hal.ird.fr/ird-00403656.

[6] Centers for Disease Control and Prevention (CDC). (2018). HIV Prevention. https://www.cdc.gov/hiv/basivs/prevention.html.

[7] J. Chu, A. Ducrot, P. Magal, S. Ruan Hopf bifurcation in a size-structured population dynamic model with random growth J. Differ. Equ 2009 956 1000

[8] G. Da Prato and M. Iannelli, Boundary control problems for age-dependent equations. In Vol. 155 of Evolution equations, control theory and biomathematics. Marcel Dekker (1993) 91–100.

[9] C.A. Da Silva Filho, J.L. Boldrini An analysis of an optimal control problem for mosquito populations Nonlinear Anal.: Real World Appl. 2018 353 377

[10] R. Djidjou-Demasse, J.J. Tewa, S. Bowong, Y. Emvudu Optimal control for an age-structured model for the transmission of hepatitis B J. Math. Biol 2016 305 333

[11] O. Diekmann, J.A.P. Heesterbeek, J.A. Metz On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382

[12] A. Ducrot, Z. Liu, P. Magal Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems J. Math. Anal. Appl 2008 501 518

[13] J.W. Eaton, T.B. Hallett Why the proportion of transmission during early-stage HIV infection does not predict the long-term impact of treatment on HIV incidence Proc. Natl. Acad. Sci 2014 16202 16207

[14] I. Ekeland On the variational principle J. Math. Anal. Appl 1974 324 353

[15] L.C. Evans and R.F. Gariepy, Measure Theory and Fini Properties of Functions. CRC Press, Boca Raton (1992).

[16] G. Feichtinger, G. Tragler, V.M. Veliov Optimality conditions for age-structured control systems J. Math. Anal. Appl 2003 47 68

[17] K.R. Fister, S. Lenhart Optimal control of a competitive system with age-structure J. Math. Anal. Appl 2004 526 537

[18] A.B. Gumel, C.C. Mccluskey, P. Van Den Driessche Mathematical study of a staged-progression HIV model with imperfect vaccine Bull. Math. Biol 2006 2105 2128

[19] H. Guo, M.Y. Li Global dynamics of a staged-progression model for HIV/AIDS with amelioration Nonlinear Anal.: Real World Appl 2011 2529 2540

[20] J.K. Hale, J.P. Lasalle, M. Slemrod Theory of a general class of dissipative processes J. Math. Anal. Appl 1972 177 191

[21] T.D. Hollingsworth, R.M. Anderson, C. Fraser HIV-1 transmission, by stage of infection J. Infect. Dis 2008 687 693

[22] J.F. Hutchinson The biology and evolution of HIV Annu. Rev. Anthropol 2001 85 108

[23] J.M. Hyman, J. Li, E.A. Stanley The differential infectivity and staged progression models for the transmission of HIV12 Math. Biosci 1999 77 109

[24] J.M. Hyman, J. Li, E.A. Stanley The differential infectivity and staged progression models for the transmission of HIV Math. Biosci 1999 77 109

[25] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics. Giadini Editori e Stampatori, Pisa (1994).

[26] H. Inaba On a new perspective of the basic reproduction number in heterogeneous environments J. Math. Biol 2012 309 348

[27] M.E. Kretzschmar, M.F.S. Van Der Loeff, P.J. Birrell, D. De Angelis, R.A. Coutinho Prospects of elimination of HIV with test-and-treat strategy Proc. Natl. Acad. Sci 2013 15538 15543

[28] O.A. Ladyzhenskaya On the determination of minimal global attractors for the Navier-Stokes and other partial differential equations Uspekhi Mat. Nauk 1987 25 60

[29] S. Lenhart and J.T. Workman, Optimal control applied to biological models. CRC Press (2007).

[30] X. Lin, H.W. Hethcote, P. Van Den Driessche An epidemiological model for HIV/AIDS with proportional recruitment Math. Biosci 1993 181 195

[31] P. Magal, S. Ruan On semilinear Cauchy problems with non-dense domain Adv. Differ. Equ 2009 1041 1084

[32] P. Magal, S. Ruan Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models Am. Math. Soc 2009

[33] P. Magal, C.C. Mccluskey, G.F. Webb Lyapunov functional and global asymptotic stability for an infection-age model Appl. Anal 2010 1109 1140

[34] P. Magal Compact attractors for time-periodic age-structured population models Electr. J. Differ. Equ 2001

[35] C.C. Mccluskey A model of HIV/AIDS with staged progression and amelioration Math. Biosci 2003 1 16

[36] E. Numfor, S. Bhattacharya, M. Martcheva, S. Lenhart Optimal control in multi-group coupled within-host and between-host models Electr. J. Differ. Equ 2016 87 117

[37] R.N. Nsubuga, R.G. White, B.N. Mayanja, L.A. Shafer Estimation of the HIV basic reproduction number in rural South West Uganda: 1991–2008 PloS one 2014 e83778

[38] A. Pazy Semigroups of Linear Operator and Applications to Partial Differential Equations Appl. Math. Sci 1983

[39] A.S. Perelson, P.W. Nelson Mathematical analysis of HIV-1 dynamics in vivo SIAM Rev 1999 3 44

[40] S.D. Pinkerton Probability of HIV transmission during acute infection in Rakai Natl. Inst. Health Uganda. AIDS Behavior 2008 677 684

[41] G. Rozhnova, M.F.S. Van Der Loeff, J.C. Heijne, M.E. Kretzschmar Impact of heterogeneity in sexual behavior on effectiveness in reducing HIV transmission with test-and-treat strategy PLoS Comput. Biol 2016 e1005012

[42] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, et al., Global sensitivity analysis: the primer. John Wiley Sons (2008).

[43] G.R. Sell and Y. You, Dynamics of Evolutionary Equations. Springer, New York (2002).

[44] M. Shen, Y. Xiao, L. Rong Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics Math. Biosci 2015 37 50

[45] H.L. Smith and H.R. Thieme, Vol. 118 of Dynamical systems and population persistence. American Mathematical Soc. (2011).

[46] H.R. Thieme ”Integrated semigroups” and integrated solutions to abstract Cauchy problems J. Math. Anal. Appl 1990 416 447

[47] H.R. Thieme, Quasi-compact semigroups via bounded perturbation. Advances in Mathematical Population Dynamics-Molecules, Cells and Man, edited by O. Arino, D. Axelrod, and M. Kimmel. Worlds Scientific (1997) 691–713.

[48] H.R. Thieme Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators J. Differ. Equ 2011 3772 3801

[49] United Nations Programme on HIV/AIDS (UNAIDS) (2016). Global AIDS Update 2016. www.unaids.org.

[50] G.F. Webb, Theory of nonlinear age-dependent population dynamics. CRC Press (1985).

[51] R. Weston and B. Marett, HIV infection pathology and disease progression. Vol. 1 of Clinical Pharmacist (2009).

[52] World Health Organization (WHO) (2017). www.who.int/features/qa/71/fr/.

Cité par Sources :