Voir la notice de l'article provenant de la source EDP Sciences
Mboya Ba 1 ; Ramsès Djidjou-Demasse 2 ; Mountaga Lam 1 ; Jean-Jules Tewa 3
@article{MMNP_2021_16_a31, author = {Mboya Ba and Rams\`es Djidjou-Demasse and Mountaga Lam and Jean-Jules Tewa}, title = {Optimal intervention strategies of staged progression {HIV} infections through an age-structured model with probabilities of {ART} drop out}, journal = {Mathematical modelling of natural phenomena}, eid = {30}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021024}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021024/} }
TY - JOUR AU - Mboya Ba AU - Ramsès Djidjou-Demasse AU - Mountaga Lam AU - Jean-Jules Tewa TI - Optimal intervention strategies of staged progression HIV infections through an age-structured model with probabilities of ART drop out JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021024/ DO - 10.1051/mmnp/2021024 LA - en ID - MMNP_2021_16_a31 ER -
%0 Journal Article %A Mboya Ba %A Ramsès Djidjou-Demasse %A Mountaga Lam %A Jean-Jules Tewa %T Optimal intervention strategies of staged progression HIV infections through an age-structured model with probabilities of ART drop out %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021024/ %R 10.1051/mmnp/2021024 %G en %F MMNP_2021_16_a31
Mboya Ba; Ramsès Djidjou-Demasse; Mountaga Lam; Jean-Jules Tewa. Optimal intervention strategies of staged progression HIV infections through an age-structured model with probabilities of ART drop out. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 30. doi : 10.1051/mmnp/2021024. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021024/
[1] Aide Suisse Contre le SIDA. (2018). Evolution d’une infection par le VIH. www.aids.ch/fr/vivre-avec-vih/aspects-medicaux/evolution.php.
[2] AIDS info. (2018). Offering Information on HIV/AIDS Treatment, Prevention and Research. aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/21/51/hiv-treatment–the-basics..
[3] S. Anita, Vol. 11 of Analysis and control of age-dependent population dynamics. Springer Science Business Media (2000).
[4] Optimal control of population dynamics J. Optim. Theory Appl 1999 1 14
,[5] T. Bernard, K. Diop and P. Vinard, The cost of universal free access for treating HIV/AIDS in low-income countries: the case of Senegal (2008). http://hal.ird.fr/ird-00403656.
[6] Centers for Disease Control and Prevention (CDC). (2018). HIV Prevention. https://www.cdc.gov/hiv/basivs/prevention.html.
[7] Hopf bifurcation in a size-structured population dynamic model with random growth J. Differ. Equ 2009 956 1000
, , ,[8] G. Da Prato and M. Iannelli, Boundary control problems for age-dependent equations. In Vol. 155 of Evolution equations, control theory and biomathematics. Marcel Dekker (1993) 91–100.
[9] An analysis of an optimal control problem for mosquito populations Nonlinear Anal.: Real World Appl. 2018 353 377
,[10] Optimal control for an age-structured model for the transmission of hepatitis B J. Math. Biol 2016 305 333
, , ,[11] On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382
, ,[12] Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems J. Math. Anal. Appl 2008 501 518
, ,[13] Why the proportion of transmission during early-stage HIV infection does not predict the long-term impact of treatment on HIV incidence Proc. Natl. Acad. Sci 2014 16202 16207
,[14] On the variational principle J. Math. Anal. Appl 1974 324 353
[15] L.C. Evans and R.F. Gariepy, Measure Theory and Fini Properties of Functions. CRC Press, Boca Raton (1992).
[16] Optimality conditions for age-structured control systems J. Math. Anal. Appl 2003 47 68
, ,[17] Optimal control of a competitive system with age-structure J. Math. Anal. Appl 2004 526 537
,[18] Mathematical study of a staged-progression HIV model with imperfect vaccine Bull. Math. Biol 2006 2105 2128
, ,[19] Global dynamics of a staged-progression model for HIV/AIDS with amelioration Nonlinear Anal.: Real World Appl 2011 2529 2540
,[20] Theory of a general class of dissipative processes J. Math. Anal. Appl 1972 177 191
, ,[21] HIV-1 transmission, by stage of infection J. Infect. Dis 2008 687 693
, ,[22] The biology and evolution of HIV Annu. Rev. Anthropol 2001 85 108
[23] The differential infectivity and staged progression models for the transmission of HIV12 Math. Biosci 1999 77 109
, ,[24] The differential infectivity and staged progression models for the transmission of HIV Math. Biosci 1999 77 109
, ,[25] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics. Giadini Editori e Stampatori, Pisa (1994).
[26] On a new perspective of the basic reproduction number in heterogeneous environments J. Math. Biol 2012 309 348
[27] Prospects of elimination of HIV with test-and-treat strategy Proc. Natl. Acad. Sci 2013 15538 15543
, , , ,[28] On the determination of minimal global attractors for the Navier-Stokes and other partial differential equations Uspekhi Mat. Nauk 1987 25 60
[29] S. Lenhart and J.T. Workman, Optimal control applied to biological models. CRC Press (2007).
[30] An epidemiological model for HIV/AIDS with proportional recruitment Math. Biosci 1993 181 195
, ,[31] On semilinear Cauchy problems with non-dense domain Adv. Differ. Equ 2009 1041 1084
,[32] Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models Am. Math. Soc 2009
,[33] Lyapunov functional and global asymptotic stability for an infection-age model Appl. Anal 2010 1109 1140
, ,[34] Compact attractors for time-periodic age-structured population models Electr. J. Differ. Equ 2001
[35] A model of HIV/AIDS with staged progression and amelioration Math. Biosci 2003 1 16
[36] Optimal control in multi-group coupled within-host and between-host models Electr. J. Differ. Equ 2016 87 117
, , ,[37] Estimation of the HIV basic reproduction number in rural South West Uganda: 1991–2008 PloS one 2014 e83778
, , ,[38] Semigroups of Linear Operator and Applications to Partial Differential Equations Appl. Math. Sci 1983
[39] Mathematical analysis of HIV-1 dynamics in vivo SIAM Rev 1999 3 44
,[40] Probability of HIV transmission during acute infection in Rakai Natl. Inst. Health Uganda. AIDS Behavior 2008 677 684
[41] Impact of heterogeneity in sexual behavior on effectiveness in reducing HIV transmission with test-and-treat strategy PLoS Comput. Biol 2016 e1005012
, , ,[42] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, et al., Global sensitivity analysis: the primer. John Wiley Sons (2008).
[43] G.R. Sell and Y. You, Dynamics of Evolutionary Equations. Springer, New York (2002).
[44] Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics Math. Biosci 2015 37 50
, ,[45] H.L. Smith and H.R. Thieme, Vol. 118 of Dynamical systems and population persistence. American Mathematical Soc. (2011).
[46] ”Integrated semigroups” and integrated solutions to abstract Cauchy problems J. Math. Anal. Appl 1990 416 447
[47] H.R. Thieme, Quasi-compact semigroups via bounded perturbation. Advances in Mathematical Population Dynamics-Molecules, Cells and Man, edited by O. Arino, D. Axelrod, and M. Kimmel. Worlds Scientific (1997) 691–713.
[48] Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators J. Differ. Equ 2011 3772 3801
[49] United Nations Programme on HIV/AIDS (UNAIDS) (2016). Global AIDS Update 2016. www.unaids.org.
[50] G.F. Webb, Theory of nonlinear age-dependent population dynamics. CRC Press (1985).
[51] R. Weston and B. Marett, HIV infection pathology and disease progression. Vol. 1 of Clinical Pharmacist (2009).
[52] World Health Organization (WHO) (2017). www.who.int/features/qa/71/fr/.
Cité par Sources :