Voir la notice de l'article provenant de la source EDP Sciences
Dumitru Vieru 1 ; Constantin Fetecau 2 ; Najma Ahmed 3 ; Nehad Ali Shah 4, 5
@article{MMNP_2021_16_a18, author = {Dumitru Vieru and Constantin Fetecau and Najma Ahmed and Nehad Ali Shah}, title = {A generalized kinetic model of the advection-dispersion process in a sorbing medium}, journal = {Mathematical modelling of natural phenomena}, eid = {39}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021022/} }
TY - JOUR AU - Dumitru Vieru AU - Constantin Fetecau AU - Najma Ahmed AU - Nehad Ali Shah TI - A generalized kinetic model of the advection-dispersion process in a sorbing medium JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021022/ DO - 10.1051/mmnp/2021022 LA - en ID - MMNP_2021_16_a18 ER -
%0 Journal Article %A Dumitru Vieru %A Constantin Fetecau %A Najma Ahmed %A Nehad Ali Shah %T A generalized kinetic model of the advection-dispersion process in a sorbing medium %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021022/ %R 10.1051/mmnp/2021022 %G en %F MMNP_2021_16_a18
Dumitru Vieru; Constantin Fetecau; Najma Ahmed; Nehad Ali Shah. A generalized kinetic model of the advection-dispersion process in a sorbing medium. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 39. doi : 10.1051/mmnp/2021022. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021022/
[1] New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model Thermal Sci 2016 763 769
,[2] Properties of the Caputo-Fabrizio fractional derivative and its distributional settings Fract. Calc. Appl. Anal 2018 29 44
, ,[3] D. Baleanu, K. Diethlem, E. Scalas and J.J. Trujillo, Fractional calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, vol. 3, World Scientific (2011).
[4] Properties of Caputo-Fabrizio fractional operators NTMSCI 2020 1 25
[5] M. Caputo, Elasticita e Dissipazione. Zanichelli, Bologna (1965).
[6] A new definition of fractional derivative without singular kernel Progr. Fract. Differ. Appl 2015 73 85
,[7] Applications of new time and spatial fractional derivatives with exponential kernels Progr. Fract. Differ. Appl 2016 1 11
,[8] R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler Functions Related Topics and Applications, Springer, Heildelberg (2014).
[9] Integral representations of Mittag-Leffler function on the positive real axis Tendencias Matematica Aplicada e Computacional 2019 217 228
, ,[10] Mittag-Leffler functions and their applications J. Appl. Math 2011 51
, ,[11] Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels. Pragmatic approach, memory kernel correspondence requirement and analyses Eur. Phys. J. Plus 2019 283
[12] J. Hristov, On the Atangana–Baleanu derivative and its relation to the fading memory concept: the diffusion equation formulation, in Fractional Derivatives with Mittag-Leffler Kernel, Studies in Systems, Decision and Control 194, edited by J.F. Gómez et al. Springer Nature Switzerland AG (2019).
[13] Solution of contaminant transport with adsorption in porous media by the method of characteristics Math. Modelling Num. Anal 2001 981 1006
,[14] A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws Int. J. Heat Mass Transfer 2019 1222 7
, , ,[15] An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator Math. Meth. Appl. Sci 2020 6062 6080
, , ,[16] Coupling the advection-dispersion equation with fully kinetic reversible/irreversible sorption terms to model radiocesium soil profiles in PlaceNameplaceFukushima PlaceTypePrefecture J. Environ. Radioactivity 2017 99 109
, , , ,[17] Some properties of the Mittag-Leffler functions and their relation with the Wright functions Adv. Differ. Eqs 2012 181
,[18] Comparison of first-order sorption kinetics using concept of two-site sorption model Environ. Eng. Sci 2012 1002 1007
, ,[19] F.J. Leij and M. Th. Vn Genuchten, Solute transport, in Soil Physics Companion, edited by A.W. Warrick. CRC Press, Boca Raton FL (2002) 189–240.
[20] Generalized functions for the fractional calculus NASA/TP-1999- 209424/REV1
,[21] The analysis solutions for two-dimensional fractional diffusion equations with variable coefficients Int. J. Math. Trends Technol 2014 60 66
, ,[22] Operational method in fractional calculus Fract. Calc. Appl. Anal 1999 463 488
[23] On some new properties of the fundamental solution to the multi-dimensional space- and time-fractional diffusion-wave equation Mathematics 2017 76
[24] Two approaches to obtaining the space-time fractional advection-diffusion equation Entropy 2017 297
,[25] J.L. Schiff, The Laplace Transform: Theory and Applications. Springer Verlag, New York (1999).
[26] B. Stankovic, On the function E.M. Wright. Publications de L’Institute Mathematique, Nouvelle serie, 10 (1970) 113–124.
[27] Understanding the non-Gaussian nature of linear reactive solute transport in 1D and 2D. From particle dynamics to the partial differential equations Transp. Porous Med. 2012 547 571
, , , ,[28] A method to solve the advection-dispersion equation with a kinetic adsorption isotherm Adv. Water Res 1996 193 206
[29] An analytical model for nonlinear adsorptive transport through layered soils Water Resour. Res 1997 21 29
, , ,Cité par Sources :