A generalized kinetic model of the advection-dispersion process in a sorbing medium
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 39.

Voir la notice de l'article provenant de la source EDP Sciences

A new time-fractional derivative with Mittag-Leffler memory kernel, called the generalized Atangana-Baleanu time-fractional derivative is defined along with the associated integral operator. Some properties of the new operators are proved. The new operator is suitable to generate by particularization the known Atangana-Baleanu, Caputo-Fabrizio and Caputo time-fractional derivatives. A generalized mathematical model of the advection-dispersion process with kinetic adsorption is formulated by considering the constitutive equation of the diffusive flux with the new generalized time-fractional derivative. Analytical solutions of the generalized advection-dispersion equation with kinetic adsorption are determined using the Laplace transform method. The solution corresponding to the ordinary model is compared with solutions corresponding to the four models with fractional derivatives.
DOI : 10.1051/mmnp/2021022

Dumitru Vieru 1 ; Constantin Fetecau 2 ; Najma Ahmed 3 ; Nehad Ali Shah 4, 5

1 Department of Theoretical Mechanics, Technical University of Iasi, Iasi, Romania.
2 Section of Mathematics, Academy of Romanian Scientists, 050094 Bucharest, Romania.
3 Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan.
4 Department of Mechanical Engineering, Sejong University, Seoul, South Korea.
5 Department of Mathematics, Lahore Leads University, Lahore, Pakistan.
@article{MMNP_2021_16_a18,
     author = {Dumitru Vieru and Constantin Fetecau and Najma Ahmed and Nehad Ali Shah},
     title = {A generalized kinetic model of the advection-dispersion process in a sorbing medium},
     journal = {Mathematical modelling of natural phenomena},
     eid = {39},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021022/}
}
TY  - JOUR
AU  - Dumitru Vieru
AU  - Constantin Fetecau
AU  - Najma Ahmed
AU  - Nehad Ali Shah
TI  - A generalized kinetic model of the advection-dispersion process in a sorbing medium
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021022/
DO  - 10.1051/mmnp/2021022
LA  - en
ID  - MMNP_2021_16_a18
ER  - 
%0 Journal Article
%A Dumitru Vieru
%A Constantin Fetecau
%A Najma Ahmed
%A Nehad Ali Shah
%T A generalized kinetic model of the advection-dispersion process in a sorbing medium
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021022/
%R 10.1051/mmnp/2021022
%G en
%F MMNP_2021_16_a18
Dumitru Vieru; Constantin Fetecau; Najma Ahmed; Nehad Ali Shah. A generalized kinetic model of the advection-dispersion process in a sorbing medium. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 39. doi : 10.1051/mmnp/2021022. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021022/

[1] A. Atangana, D. Baleanu New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model Thermal Sci 2016 763 769

[2] T.M. Atanackovic, S. Pilipovic, D. Zorika Properties of the Caputo-Fabrizio fractional derivative and its distributional settings Fract. Calc. Appl. Anal 2018 29 44

[3] D. Baleanu, K. Diethlem, E. Scalas and J.J. Trujillo, Fractional calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, vol. 3, World Scientific (2011).

[4] G.A.M. Boro Nchama Properties of Caputo-Fabrizio fractional operators NTMSCI 2020 1 25

[5] M. Caputo, Elasticita e Dissipazione. Zanichelli, Bologna (1965).

[6] M. Caputo, M. Fabrizio A new definition of fractional derivative without singular kernel Progr. Fract. Differ. Appl 2015 73 85

[7] M. Caputo, M. Fabrizio Applications of new time and spatial fractional derivatives with exponential kernels Progr. Fract. Differ. Appl 2016 1 11

[8] R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler Functions Related Topics and Applications, Springer, Heildelberg (2014).

[9] E.C. Grigoletto, E.C. Oliveira, R.F. Camargo Integral representations of Mittag-Leffler function on the positive real axis Tendencias Matematica Aplicada e Computacional 2019 217 228

[10] H.J. Haubold, A.M. Mathai, R.K. Saxena Mittag-Leffler functions and their applications J. Appl. Math 2011 51

[11] J. Hristov Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels. Pragmatic approach, memory kernel correspondence requirement and analyses Eur. Phys. J. Plus 2019 283

[12] J. Hristov, On the Atangana–Baleanu derivative and its relation to the fading memory concept: the diffusion equation formulation, in Fractional Derivatives with Mittag-Leffler Kernel, Studies in Systems, Decision and Control 194, edited by J.F. Gómez et al. Springer Nature Switzerland AG (2019).

[13] J. Kacur, R. Van Keer Solution of contaminant transport with adsorption in porous media by the method of characteristics Math. Modelling Num. Anal 2001 981 1006

[14] D. Kumar, J. Singh, K. Tanwar, D. Baleanu A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws Int. J. Heat Mass Transfer 2019 1222 7

[15] S. Kumar, S. Ghosh, B. Samet, E.F.D. Goufo An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator Math. Meth. Appl. Sci 2020 6062 6080

[16] H. Kurikami, A. Malins, M. Takeishi, K. Saito, K. Iijima Coupling the advection-dispersion equation with fully kinetic reversible/irreversible sorption terms to model radiocesium soil profiles in PlaceNameplaceFukushima PlaceTypePrefecture J. Environ. Radioactivity 2017 99 109

[17] M. Kurulay, M. Bayram Some properties of the Mittag-Leffler functions and their relation with the Wright functions Adv. Differ. Eqs 2012 181

[18] S. Lee, D.J. Kim, J.W. Choi Comparison of first-order sorption kinetics using concept of two-site sorption model Environ. Eng. Sci 2012 1002 1007

[19] F.J. Leij and M. Th. Vn Genuchten, Solute transport, in Soil Physics Companion, edited by A.W. Warrick. CRC Press, Boca Raton FL (2002) 189–240.

[20] C.F. Lorenzo, T.T. Hartley Generalized functions for the fractional calculus NASA/TP-1999- 209424/REV1

[21] Y. Liu, F. Zong, L. Zheng The analysis solutions for two-dimensional fractional diffusion equations with variable coefficients Int. J. Math. Trends Technol 2014 60 66

[22] Y.U. Luchko Operational method in fractional calculus Fract. Calc. Appl. Anal 1999 463 488

[23] Y. Luchko On some new properties of the fundamental solution to the multi-dimensional space- and time-fractional diffusion-wave equation Mathematics 2017 76

[24] Y. Povstenko, T. Kyrylych Two approaches to obtaining the space-time fractional advection-diffusion equation Entropy 2017 297

[25] J.L. Schiff, The Laplace Transform: Theory and Applications. Springer Verlag, New York (1999).

[26] B. Stankovic, On the function E.M. Wright. Publications de L’Institute Mathematique, Nouvelle serie, 10 (1970) 113–124.

[27] G. Uffink, A. Elfeki, M. Dekking, J. Bruining, C. Kraaikamp Understanding the non-Gaussian nature of linear reactive solute transport in 1D and 2D. From particle dynamics to the partial differential equations Transp. Porous Med. 2012 547 571

[28] J.J.A. Van Kooten A method to solve the advection-dispersion equation with a kinetic adsorption isotherm Adv. Water Res 1996 193 206

[29] Y.S. Wu, J.B. Kool, P.S. Huyakom, Z.A. Saleem An analytical model for nonlinear adsorptive transport through layered soils Water Resour. Res 1997 21 29

Cité par Sources :