Voir la notice de l'article provenant de la source EDP Sciences
Karim Amin 1, 2 ; Irina Badralexi 1 ; Andrei Halanay 1 ; Ragheb Mghames 1, 2
@article{MMNP_2021_16_a51, author = {Karim Amin and Irina Badralexi and Andrei Halanay and Ragheb Mghames}, title = {A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution}, journal = {Mathematical modelling of natural phenomena}, eid = {36}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021021}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021021/} }
TY - JOUR AU - Karim Amin AU - Irina Badralexi AU - Andrei Halanay AU - Ragheb Mghames TI - A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021021/ DO - 10.1051/mmnp/2021021 LA - en ID - MMNP_2021_16_a51 ER -
%0 Journal Article %A Karim Amin %A Irina Badralexi %A Andrei Halanay %A Ragheb Mghames %T A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021021/ %R 10.1051/mmnp/2021021 %G en %F MMNP_2021_16_a51
Karim Amin; Irina Badralexi; Andrei Halanay; Ragheb Mghames. A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 36. doi : 10.1051/mmnp/2021021. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021021/
[1] Age-structured model of hematopoiesis dynamics with growth factor-dependent coefficients Electr. J. Differ. Equ 2016 1 20
, , ,[2] Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases Bull. Math. Biol 2006 2321 2351
, ,[3] A delay differential equations model for maintenance therapy in acute lymphoblastic leukemia U.P.B. Sci. Bull. Series A 2020 13 24
, ,[4] Stability analysis of a feedback model for the action of the immune system in leukemia Math. Model. Nat. Phenom 2014 108 132
, , , ,[5] R. Bellman and K.L. Cooke, Differential-Difference Equations. Academic Press, New York (1963).
[6] Altered life history strategies protect malaria parasites against drugs Evolut. Appl 2017 1 14
, , ,[7] A mathematical model for hematopoiesis: I. Periodic chronic myelogenous leukemia J. Theor. Biol 2005 117 132
,[8] L.E. El’sgol’ts and S.B. Norkin, Introduction to the theory of differential equations with deviating arguments (in Russian). Nauka, Moscow (1971).
[9] A. Halanay, Differential Equations. Stability, Oscillations, Time Lags. Academic Press, New York (1966).
[10] Existence and stability of limit cycles in a two-delays model of hematopoiesis including asymmetric division Math. Model. Nat. Phenom 2014 58 78
, ,[11] J. Hale and S.M. Verduyn-Lunel, Introduction to Functional Differential Equations. Springer, New York (1993).
[12] Preferential Invasion by Plasmodium Merozoites and the Self-Regulation of Parasite Burden PLoS ONE 2013 e57434
,[13] Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems Automatica 2003 15 20
,[14] Time Delay Systems: Lyapunov Functionals and Matrices 2013
[15] The immunological Plasmodium falciparum malaria characteristics of children in Tajikistan Republic Hindawi J. Tropical Med. 2019
, ,[16] A theory of immunodominance and adaptive regulation Bull. Math. Biol 2011 1645 1665
, ,[17] Structured mathematical models to investigate the interactions between Plasmodium falciparum malaria parasites and host immune response. Math. Biosci. 2019 65 75
, ,[18] I.G. Malkin, Theory of stability of motion (in Russian), Nauka, Moskow (1966) English translation: Atomic Energy Comm. Translation AEC-TR-3352.
[19] G. Molineux, M. Foote and S. Elliott, Erythropoiesis and Eythropoietins. Second Edition Birkhauser (2009).
[20] Role of symmetric and asymmetric division of stem cells in developing drug resistance PNAS 2010 16766 16771
,Cité par Sources :