A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 36.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper the stability of the zero equilibrium of a system with time delay is studied. The critical case of a multiple zero root of the characteristic equation of the linearized system is treated by applying a Malkin type theorem and using a complete Lyapunov-Krasovskii functional. An application to a model for malaria under treatment considering the action of the immune system is presented.
DOI : 10.1051/mmnp/2021021

Karim Amin 1, 2 ; Irina Badralexi 1 ; Andrei Halanay 1 ; Ragheb Mghames 1, 2

1 Department of Mathematics and Informatics, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania.
2 School of Arts and Sciences, Department of Mathematics and Physics, Lebanese International University, Bekaa, Lebanon.
@article{MMNP_2021_16_a51,
     author = {Karim Amin and Irina Badralexi and Andrei Halanay and Ragheb Mghames},
     title = {A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution},
     journal = {Mathematical modelling of natural phenomena},
     eid = {36},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021021},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021021/}
}
TY  - JOUR
AU  - Karim Amin
AU  - Irina Badralexi
AU  - Andrei Halanay
AU  - Ragheb Mghames
TI  - A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021021/
DO  - 10.1051/mmnp/2021021
LA  - en
ID  - MMNP_2021_16_a51
ER  - 
%0 Journal Article
%A Karim Amin
%A Irina Badralexi
%A Andrei Halanay
%A Ragheb Mghames
%T A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021021/
%R 10.1051/mmnp/2021021
%G en
%F MMNP_2021_16_a51
Karim Amin; Irina Badralexi; Andrei Halanay; Ragheb Mghames. A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 36. doi : 10.1051/mmnp/2021021. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021021/

[1] M. Adimy, Y. Bourfia, M.L. Hbid, C. Marquet Age-structured model of hematopoiesis dynamics with growth factor-dependent coefficients Electr. J. Differ. Equ 2016 1 20

[2] M. Adimy, F. Crauste, S. Ruan Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases Bull. Math. Biol 2006 2321 2351

[3] I. Badralexi, A. Halanay, R. Mghames A delay differential equations model for maintenance therapy in acute lymphoblastic leukemia U.P.B. Sci. Bull. Series A 2020 13 24

[4] S. Balea, A. Halanay, D. Jardan, M. Neamtu, C.A. Safta Stability analysis of a feedback model for the action of the immune system in leukemia Math. Model. Nat. Phenom 2014 108 132

[5] R. Bellman and K.L. Cooke, Differential-Difference Equations. Academic Press, New York (1963).

[6] P. Birget, M. Greischar, S. Reece, N. Mideo Altered life history strategies protect malaria parasites against drugs Evolut. Appl 2017 1 14

[7] C. Colijn, M.C. Mackey A mathematical model for hematopoiesis: I. Periodic chronic myelogenous leukemia J. Theor. Biol 2005 117 132

[8] L.E. El’sgol’ts and S.B. Norkin, Introduction to the theory of differential equations with deviating arguments (in Russian). Nauka, Moscow (1971).

[9] A. Halanay, Differential Equations. Stability, Oscillations, Time Lags. Academic Press, New York (1966).

[10] A. Halanay, D. Candea, R. Radulescu Existence and stability of limit cycles in a two-delays model of hematopoiesis including asymmetric division Math. Model. Nat. Phenom 2014 58 78

[11] J. Hale and S.M. Verduyn-Lunel, Introduction to Functional Differential Equations. Springer, New York (1993).

[12] D.H. Kerlin, M.L. Gatton Preferential Invasion by Plasmodium Merozoites and the Self-Regulation of Parasite Burden PLoS ONE 2013 e57434

[13] V.L. Kharitonov, A.P. Zhabko Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems Automatica 2003 15 20

[14] V.L. Kharitonov Time Delay Systems: Lyapunov Functionals and Matrices 2013

[15] N. Khodzhaeva, A. Baranova, A. Tokmalaev The immunological Plasmodium falciparum malaria characteristics of children in Tajikistan Republic Hindawi J. Tropical Med. 2019

[16] P. Kim, P. Lee, D. Levy A theory of immunodominance and adaptive regulation Bull. Math. Biol 2011 1645 1665

[17] B. Ma, C. Li, J. Warner Structured mathematical models to investigate the interactions between Plasmodium falciparum malaria parasites and host immune response. Math. Biosci. 2019 65 75

[18] I.G. Malkin, Theory of stability of motion (in Russian), Nauka, Moskow (1966) English translation: Atomic Energy Comm. Translation AEC-TR-3352.

[19] G. Molineux, M. Foote and S. Elliott, Erythropoiesis and Eythropoietins. Second Edition Birkhauser (2009).

[20] C. Tomasetti, D. Levi Role of symmetric and asymmetric division of stem cells in developing drug resistance PNAS 2010 16766 16771

Cité par Sources :