Voir la notice de l'article provenant de la source EDP Sciences
J. Porter 1, 2 ; P. Salgado Sánchez 1, 2 ; V. Shevtsova 3, 4 ; V. Yasnou 3
@article{MMNP_2021_16_a4, author = {J. Porter and P. Salgado S\'anchez and V. Shevtsova and V. Yasnou}, title = {A review of fluid instabilities and control strategies with applications in microgravity}, journal = {Mathematical modelling of natural phenomena}, eid = {24}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021020}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021020/} }
TY - JOUR AU - J. Porter AU - P. Salgado Sánchez AU - V. Shevtsova AU - V. Yasnou TI - A review of fluid instabilities and control strategies with applications in microgravity JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021020/ DO - 10.1051/mmnp/2021020 LA - en ID - MMNP_2021_16_a4 ER -
%0 Journal Article %A J. Porter %A P. Salgado Sánchez %A V. Shevtsova %A V. Yasnou %T A review of fluid instabilities and control strategies with applications in microgravity %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021020/ %R 10.1051/mmnp/2021020 %G en %F MMNP_2021_16_a4
J. Porter; P. Salgado Sánchez; V. Shevtsova; V. Yasnou. A review of fluid instabilities and control strategies with applications in microgravity. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 24. doi : 10.1051/mmnp/2021020. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021020/
[1] Non-Oberbeck-Boussinesq Effects in Gaseous Rayleigh-Bénard Convection Phys. Rev. Lett 2007 054501
, , , ,[2] Control of thermocapillary convection in a liquid bridge by vibration J. Appl. Phys 1993 4165 4170
, , , ,[3] Pattern formation in two-frequency forced parametric waves Phys. Rev. E 2002 036224
,[4] Pattern selection: the importance of “how you get there” Biophys. J 2015 1307 1308
,[5] Spanwise modal competition in cross-waves Physica D 1990 87 104
, ,[6] Effect of oxygen on thermocapillary convection in a molten silicon column under microgravity J. Electrochem. Soc 2001 G185
, ,[7] Control of oscillatory thermocapillary convection with local heating J. Cryst. Growth 2006 502 511
, ,[8] Cross-waves. Part 2. Experiments. J. Fluid Mech. 1972 245 255
,[9] Nonstandard inkjets Annu. Rev. Fluid Mech 2013 85 113
, ,[10] Standing radial cross-waves J. Fluid Mech 1991 471 499
,[11] Controlling Rayleigh-Bénard convection via reinforcement learning J. Turbul 2020 1 21
, , ,[12] Effects of surface tension and viscosity on Taylor instability Quart. Appl. Math 1954 151 162
,[13] Les tourbillons cellulaires dans une nappe liquide Rev. Gén. Sciences Pure Appl. 1900 1261 1271
[14] The stability of a plane free surface of a liquid in vertical periodic motion Proc. Roy. Soc. Lond. A 1954 505 515
,[15] The effect of surface active agents on convection cells induced by surface tension Chem. Eng. Sci 1965 737 745
,[16] Compressible potential flows with free boundaries. Part I: Vibrocapillary equilibria. Z. Angew. Math. Mech. 2001 261 271
, , , ,[17] Variational and finite element analysis of vibroequilibria Comput. Methods Appl. Math 2004 290 323
, ,[18] Vibrations in space as an artificial gravity? Europhysics News 2006 22 25
[19] Control of stability of a fluid interface by means of vibrations, electric and magnetic fields Third All-Union Seminar on Hydromechanics and Heat and Mass Transfer in Zero Gravity, Abstracts of Papers (in Russian) 1984 18 20
, , , ,[20] Effect of surface-active contaminants on radial thermocapillary flows Eur. Phys. J. E 2019 131
[21] Recent developments in Rayleigh-Bénard convection Annu. Rev. Fluid Mech 2000 709 778
, ,[22] J.C. Brice, Crystal growth. Blackie and Son (1986).
[23] Thermal instability and the formation of clumpy gas clouds Astrophys. J 2000 270 282
,[24] The Rayleigh-Taylor instability in inertial fusion, astrophysical plasma and flames Plasma Phys. Controlled Fusion 2007 B513 B520
, , ,[25] Bistability and competition of spatiotemporal chaotic and fixed point attractors in Rayleigh–Bénard convection Phys. Rev. Lett 1997 1853 1856
, , ,[26] Holmboe wave fields in simulation and experiment J. Fluid Mech 2010 205 223
, , ,[27] Spatiotemporal chaos and quasipatterns in coupled reaction-diffusion systems Physica D 2020 132475
, , , ,[28] Thermocapillary suppression of the Plateau–Rayleigh instability: a model for long encapsulated liquid zones J. Fluid Mech 2003 97 113
, ,[29] Experiments on the transition from the steady to the oscillatory Marangoni-convection of a floating zone under reduced gravity effect Acta Astronaut 1979 1073 1082
,[30] Rayleigh Bénard convective instability of a fluid under high-frequency vibration Int. J. Heat Mass Transf 2004 4101 4112
, ,[31] The stability of time-periodic flows Annu. Rev. Fluid Mech 1976 57 74
[32] Enhanced Faraday pattern stability with three-frequency driving Phys. Rev. E 2006 046305
,[33] Experimental study of the Faraday instability J. Fluid Mech 1990 383 409
[34] P. Drazin, Dynamical Meteorology | Kelvin–Helmholtz Instability, In G.R. North, J. Pyle and F. Zhang, editors, Encyclopedia of Atmospheric Sciences. Academic Press, Oxford, second edition (2015) 343–346.
[35] Non-contaminating method to reduce Marangoni convection in microgravity float zones J. Cryst. Growth 1988 148 158
,[36] Control of jet breakup by a superposition of two Rayleigh–Plateau-unstable modes J. Fluid Mech 2014 275 296
, , , ,[37] The effects of gravity on the capillary instability in tubes J. Fluid Mech 2006 217 226
, ,[38] Parametrically excited quasicrystalline surface waves Phys. Rev. E 1993 R788 R791
,[39] Patterns and quasi-patterns in the Faraday experiment J. Fluid Mech 1994 123 148
,[40] The Thermocapillary Effects in Phase Change Materials in Microgravity experiment: Design, preparation and execution of a parabolic flight experiment Acta Astronaut 2019 185 196
, , , ,[41] Experimental evidence of thermocapillarity in phase change materials in microgravity: measuring the effect of Marangoni convection in solid/liquid phase transitions Int. Commun. Heat Mass Transf 2020 104529
, , , , ,[42] O. Faltinsen and A. Timokha. Sloshing. Cambridge Univ. Press (2009).
[43] On a peculiar class of acoustical figures Phil. Trans. R. Soc. Lond 1831 299 340
[44] The CFVib experiment: control of fluids in microgravity with vibrations Microgravity Sci. Technol 2017 351 364
, , , ,[45] Instabilities of vibroequilibria in rectangular containers Phys. Fluids 2017 024108
, , ,[46] Thermal instability Astrophys. J 1965 531 567
[47] Large departures from Boussinesq approximation in the Rayleigh–Bénard problem Phys. Fluids A 1992 1355 1372
, ,[48] Viscous potential flow analysis of Kelvin–Helmholtz instability in a channel J. Fluid Mech 2001 263 283
,[49] Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields Phys. Rev. E 2014 012309
, , , ,[50] Dynamic behavior of the free liquid surface subject to vibrations under conditions of near-zero gravity Sov. Appl. Mech 1977 499 503
, ,[51] Pattern selection in miscible liquids under periodic excitation in microgravity: Effect of interface width Phys. Fluids 2018 062103
, ,[52] Hydrothermal waves in a liquid bridge subjected to a gas stream along the interface J. Fluid Mech 2021 A34
, , , ,[53] Interfacial pattern selection in miscible liquids under vibration Soft Matter 2015 8221 8224
, , , ,[54] Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness Phys. Rev. E 2007 056317
, , , , ,[55] On Cross-waves. J. Fluid Mech 1970 837 849
[56] Two-dimensional variational vibroequilibria and Faraday’sdrops Z. Angew. Math. Phys 2004 1015 1033
, ,[57] Effect of axial magnetic field on three-dimensional instability of natural convection in a vertical Bridgman growth configuration J. Cryst. Growth 2001 63 72
, ,[58] Free thermal convection in a vibrational field under conditions of weightlessness Sov. Phys. Dokl 1979 894 896
,[59] A.V. Getling, Rayleigh-Bénard convection, World Scientific (1998).
[60] Influence of gravity on the frozen wave instability in immiscible liquids Phys. Rev. Fluids 2020 084001
, , ,[61] The effects of gravity modulation on the stability of a heated fluid layer J. Fluid Mech 1970 783 806
,[62] Influence of slip on the Plateau–Rayleigh instability on a fibre Nat. Commun 2015 7409
, , , , , , , ,[63] LIX. Forced surface-waves on water Phil. Mag 1929 569 576
[64] Stabilization of axisymmetric liquid bridges through vibration-induced pressure fields J. Colloid Interface Sci 2018 409 417
, , , ,[65] On discontinuous movements of fluids Philos. Mag 1868 337 346
[66] On the behavior of symmetric waves in stratified shear layers Geofys. Publ 1962 67 113
[67] Active control of Rayleigh–Bénard convection Phys. Fluids 1997 1861 1863
[68] I. Mutabazi, J. E. Wesfreid and E. Guyon, editors, Dynamics of spatio-temporal cellular structures. Vol. 207 of Springer Tracts in Modern Physics, Springer-Verlag, New York (2006).
[69] Steep capillary-gravity waves in oscillatory shear-driven flows J. Fluid Mech 2009 131 150
,[70] Evolution and Large-Electric-Field Suppression of the Transverse Kelvin–Helmholtz Instability Phys. Rev. Lett 1970 1567 1570
[71] The generation of cross-waves in a long deep channel by parametric resonance J. Fluid Mech 1984 53 74
[72] Modelling for robust feedback control of fluid flows J. Fluid Mech 2015 687 722
, , , ,[73] Effect of reboosting manoeuvres on the determination of the Soret coefficients of DCMIX ternary systems Int. J. Therm. Sci 2019 205 219
, , ,[74] Analysis of periodic non-rotational W striations in Mo single crystals due to nonsteady thermocapillary convection J. Cryst. Growth 1990 214 222
,[75] Dynamic stability of a pendulum when its point of suspension vibrates Soviet Phys. JETP 1951 588 597
[76] Stabilization of Rayleigh–Bénard convection by means of a slow nonplanar oscillatory flow Phys. Fluids A 1992 647 648
[77] L. Kelvin, Mathematical and physical papers, IV, hydrodynamics and general dynamics. Cambridge Univ. Press (1910).
[78] Nonlinear wave generation by a wavemaker in deep to intermediate water depth Ocean Eng 2019 222 234
,[79] The influence of surfactants on thermocapillary flow instabilities in low Prandtl melting pools Phys. Fluids 2016 062106
, ,[80] Wave pattern formation in a fluid annulus with a radially vibrating inner cylinder J. FluidMech 1996 229 252
,[81] Effect of ambient air flow on thermocapillary convection in a full-zone liquid bridge Interfacial Phenom. Heat Transf 2015 231 242
, , , ,[82] Patterns and spatio-temporal chaos in parametrically forced surface waves: a systematic survey at large aspect ratio Physica D 1996 133 154
,[83] Superlattice patterns in surface waves Physica D 1998 99 111
, ,[84] Linear theory of Faraday instability in viscous liquids Proc. R. Soc. A 1996 1113 1126
[85] Parametric instability of the interface between two fluids J. Fluid Mech 1994 49 68
,[86] L.D. Landau and E.M. Lifshitz, Fluid mechanics. Vol. 6 of Course of Theoretical Physics. Pergamon Books Ltd., second edition, (1987).
[87] Review: Possible strategies for the control and stabilization of Marangoni flow in laterally heated floating zones Fluid Dyn. Mater. Process 2005 171 188
[88] Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain Phys. Plasmas 1995 3933 4024
[89] Capillary surfaces: stability from families of equilibria with application to the liquid bridge Proc. R. Soc. A 1995 411 439
,[90] Flow-influenced stabilization of liquid columns J. Colloid Interface Sci 1995 38 43
,[91] Vibration-induced convective flows Microgravity Sci. Technol 1998 101 106
, , , , ,[92] Mechanisms of vibrational control of heat transfer in a liquid bridge Int. J. Heat Mass Transf 1997 4031 4042
, ,[93] Development of a steady relief at the interface of fluids in a vibrational field Fluid Dyn. Res 1986 849 854
,[94] Deformation of gas or drop inclusion in high frequency vibrational field Microgravity Q 1996 69 73
, , ,[95] Interface orienting by vibration C. R. Acad. Sci. Paris, Ser. IIb 1997 391 396
, , ,[96] Numerical modeling of frozen wave instability in fluids with high viscosity contrast Fluid Dyn. Res 2016 061415
, , ,[97] Dynamics of Interfaces in Vibrational Fields Fizmatlit 2003
, ,[98] Faraday waves on band pattern under zero gravity conditions Phys. Rev. Fluids 2019 064001
, , , ,[99] Band instability in near-critical fluids subjected to vibrationunder weightlessness Phys. Rev. E 2017 013105
, , , , ,[100] Influence of high frequency vibrations on fluid flow and heat transfer in a floating zone Crys. Res. Technol 2003 635 653
, , ,[101] Heat transfer performance and melting dynamic of a phase change material subjected to thermocapillary effects Int. J. Heat Mass Transf 2017 501 510
,[102] On the Rayleigh–Bénard problem: dominant compressibility effects J. Fluid Mech 2006 461 475
,[103] C. Marangoni, Sull’espansione delle goccie d’un liquido galleggianti sulla superfice di altro liquido, Fratelli Fusi, (1865).
[104] Stabilization of a cylindrical capillary Rayleigh–Plateau limit using acoustic radiation pressure and active feedback J. Fluid Mech 1997 345 357
, ,[105] Inkjet printing – The physics of manipulating liquid jets and drops J. Phys. Conf. Ser 2008 012001
, ,[106] Experimental evidence of thermal vibrational convection in a nonuniformly heated fluid in a reduced gravity environment Phys. Rev. Lett 2008 084501
, , ,[107] Large-scale Marangoni convection in a liquid layer with insoluble surfactant under heat flux modulation J. Adhes. Sci. Technol 2011 1411 1423
,[108] Parametrically forced surface waves Annu. Rev. Fluid Mech 1990 143 165
,[109] Convective instabilities in liquid layers with free upper surface under the action of an inclined temperature gradient Phys. Fluids 2009 112102
,[110] Heteroclinic dynamics in a model of Faraday waves in a square container Physica D 2009 846 859
, ,[111] Cross-waves induced by the vertical oscillation of a fully immersed vertical plate Phys. Fluids 2012 022110
, , ,[112] Numerical study of hydrothermal wave suppression in thermocapillary flow using a predictive control method Comput. Math. Math. Phys 2018 493 507
[113] Departures from the Boussinesq approximation in laminar Bénard convection Phys. Fluids 1987 1561 1564
,[114] Stabilization of Rayleigh-Bénard convection by means of mode reduction Proc. R. Soc. A 2004 1807 1830
, ,[115] Feedback shear layer control for bluff body drag reduction J. Fluid Mech 2008 161 196
, , , ,[116] On convection cells induced by surface tension J. Fluid Mech 1958 489 500
[117] Oblique cross-waves in horizontally vibrated containers Fluid Dyn. Res 2014 041410
, , ,[118] Subharmonic capillary-gravity waves in large containers subject to horizontal vibrations J. Fluid Mech 2014 196 228
, , ,[119] Surface waves along liquid cylinders. Part 1. Stabilising effect of gravity on the Plateau–Rayleigh instability. J. Fluid Mech. 2020 A8
, ,[120] J.A.F. Plateau, Statique experimentale et theorique des liquides soumis aux seules forces moleculaires. 2 (1873). Gauthier-Villars.
[121] Pattern selection in a horizontally vibrated container Fluid Dyn. Res 2012 065501
, , ,[122] Onset patterns in a simple model of localized parametric forcing Phys. Rev. E 2013 042913
, , ,[123] Pattern control via multifrequency parametric forcing Phys. Rev. Lett 2004 034502
, ,[124] Propagating Holmboe waves at the interface between two immiscible fluids J. Fluid Mech 1994 277 302
, ,[125] Mechanisms of canonical Kelvin–Helmholtz instability suppression in magnetohydrodynamic flows Phys. Fluids 2019 024108
,[126] Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface J. Fluid Mech 1983 545 567
, ,[127] Harnessing the Kelvin–Helmholtz instability: feedback stabilization of an inviscid vortex sheet J. Fluid Mech 2018 146 177
,[128] Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density Proc. London Math. Soc 1882 170 177
[129] On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side Phil. Mag., Ser.6 1916 529 546
[130] On the instability of cylindrical fluid surfaces London, Edinburgh Dublin Philos. Mag. J. Sci. 1892 177 180
[131] Three-wave interactions and spatiotemporal chaos Phys. Rev. Lett 2012 074504
, ,[132] Vibroequilibria in microgravity: Comparison of experiments and theory Phys. Rev. E 2019 063103
, , ,[133] Effect of initial interface orientation on patterns produced by vibrational forcing in microgravity J. Fluid Mech 2020 A38
, , , , ,[134] Finite-size effects on pattern selection in immiscible fluids subjected to horizontal vibrations in weightlessness Phys. Rev. E 2019 042803
, , ,[135] Dynamics of weakly coupled parametrically forced oscillators Phys. Rev. E 2016 022216
, , ,[136] Interfacial phenomena in immiscible liquids subjected to vibrations in microgravity J. Fluid Mech 2019 850 883
, , , , ,[137] Thermocapillary effects during the melting of phase change materials in microgravity: Heat transport enhancement Int. J. Heat Mass Transf 2020 120478
, , ,[138] Thermocapillary effects during the melting of phase-change materials in microgravity: steady and oscillatory flow regimes J. Fluid Mech 2021 A20
, , ,[139] Effect of thermocapillary convection on the melting of phase change materials in microgravity: Experiments and simulations Int. J. Heat Mass Transf 2020 119717
, , , ,[140] Nonlinear feedback control of Marangoni wave patterns in a thin film heated from below Physica D 2020 132627
,[141] The final stages of capillary break-up of polymer solutions Phys. Fluids 2012 023101
, , ,[142] Second-order wavemaker theory for irregular waves Ocean Eng 1996 47 88
[143] Thermocapillary liquid bridges and Marangoni convection under microgravity–Results and lessons learned Microgravity Sci. Technol 2014 1 10
[144] Some evidence for the existence and magnitude of a critical Marangoni number for the onset of oscillatory flow in crystal growth melts J. Cryst. Growth 1979 125 131
,[145] An overview of Rayleigh–Taylor instability Physica D 1984 3 18
[146] Determinants of Faraday wave-patterns in water samples oscillated vertically at a range of frequencies from 50-200 Hz Water 2017 1 27
,[147] The JEREMI-project on thermocapillary convection in liquid bridges. Part B: Overview on impact of co-axial gas flow Fluid Dyn. Mater. Process. 2014 197 240
, , , , , , , , ,[148] Thermocapillary flow regimes and instability caused by a gas stream along the interface J. Fluid Mech 2013 644 670
, ,[149] Two-scale wave patterns on a periodically excited miscible liquid–liquid interface J. Fluid Mech 2016 409 422
, , , ,[150] Experimental and theoretical study of vibration-induced thermal convection in low gravity J. Fluid Mech 2010 53 82
, , , ,[151] Feedback control of oscillatory thermocapillary convection in a half-zone liquid bridge J. Fluid Mech 2003 193 211
, , , ,[152] Surface wave mode interactions: Effects of symmetry and degeneracy J. Fluid Mech 1989 349 354
,[153] Flame spreading above liquid fuels: Surface tension driven flows Combust. Sci. Technol 1970 307
,[154] Scaling properties of weakly nonlinear coefficients in the Faraday problem Phys. Rev. E 2011 016209
,[155] Stability of liquid bridges between equal disks in an axial gravity field Phys. Fluids A 1993 1305 1314
,[156] Finite amplitude holmboe waves Geophys. Astrophys. Fluid Dyn 1988 181 222
, ,[157] Instability and transition in finite-amplitude Kelvin–Helmholtz and Holmboe waves J. Fluid Mech 1991 387 415
,[158] VI. On the capillary phenomena of jets. Proc. R. Soc. London 1879 71 97
[159] R.S. Subramanian and R. Balasubramanian, The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press, Cambridge (2001).
[160] Dynamic stabilization of the Rayleigh-Bénard instability by acceleration modulation J. Acoust. Soc. Am 2018 2334 2343
, , ,[161] Visual observations of the flow around a half-submerged oscillating circular cylinder Fluid Dyn. Res 1994 119 151
[162] The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I Proc. R. Soc. A 1950 192 196
[163] Long-wave Marangoni instability with vibration J. Fluid Mech 2006 61 87
, ,[164] Experiments on the instability of stratified shear flows: miscible fluids J. Fluid Mech 1971 299 319
[165] Cross-waves excited by distributed forcing in the gravity-capillary regime Phys. Fluids 2014 024111
, , ,[166] Multifrequency control of Faraday wave patterns Phys. Rev. E 2004 066206
, ,[167] Resonances and superlattice pattern stabilization in two-frequency forced Faraday waves Physica D 2002 1 29
,[168] Symmetry breaking in large columnar frozen wave patterns in weightlessness Microgravity Sci. Technol 2020 907 919
, , ,[169] The chemical basis of morphogenesis Phil. Trans. R. Soc. Lond. B 1952 37 72
[170] The damped Mathieu equation Q. Appl. Math 1993 389 398
[171] Modulated, frequency-locked and chaotic cross-waves J. Fluid Mech 1991 371 394
, ,[172] Modulated surface waves in large-aspect-ratio horizontally vibrated containers J. Fluid Mech 2007 271 304
,[173] Experimental study of Rayleigh–Taylor instability: Low Atwood number liquid systems with single-mode initial perturbations Phys. Fluids 2001 1263 1273
, ,[174] Effects of a rotating magnetic field on the thermocapillary instability in the floating zone process J. Cryst. Growth 2003 413 423
, ,[175] The dynamic stabilization of the Rayleigh-Taylor instability and the corresponding dynamic equilibrium Z. Physik 1969 291 300
[176] Dynamic stabilization of the interchange instability of a liquid-gas interface Phys. Rev. Lett 1970 444 446
[177] Influence of a coaxial gas flow on the evolution of oscillatory states in a liquid bridge Int. J. Heat Mass Transf 2018 747 759
, , ,[178] The effect of vertical vibration on the onset of thermocapillary convection in a horizontal liquid layer J. Appl. Math. Mech 2007 247 257
, ,[179] Pattern formation in weakly damped parametric surface waves J. Fluid Mech 1997 301 330
,Cité par Sources :