Modelling coffee leaf rust dynamics to control its spread
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 26.

Voir la notice de l'article provenant de la source EDP Sciences

Coffee leaf rust (CLR) is one of the main diseases that affect coffee plantations worldwide. It is caused by the fungus Hemileia vastatrix. Damages induce severe yield losses (up to 70%). Its control mainly relies on cultural practices and fungicides, the latter having harmful ecological impact and important cost. Our goal is to understand the propagation of this fungus in order to propose a biocontrol solution, based on a mycoparasite that inhibits H. vastatrix reproduction. We develop and explore a spatio-temporal model that describes CLR propagation in a coffee plantation during the rainy and dry seasons. We show the existence of a solution and prove that there exists two threshold parameters, the dry and rainy basic reproduction numbers, that determine the stability of the equilibria for the dry and rainy season subsystems. To illustrate these theoretical results, numerical simulations are performed, using a non-standard finite method to integrate the pest model. We also numerically investigate the biocontrol impact. We determine its efficiency threshold in order to ensure CLR eradication.
DOI : 10.1051/mmnp/2021018

Clotilde Djuikem 1 ; Frédéric Grognard 1 ; Roger Tagne Wafo 2 ; Suzanne Touzeau 1, 3 ; Samuel Bowong 2, 4

1 Université Côte d’Azur, Inria, INRAE, CNRS, Sorbonne Université, BIOCORE, Sophia Antipolis, France.
2 Department of Mathematics and Computer Science, University of Douala, Cameroon.
3 Université Côte d’Azur, INRAE, CNRS, ISA, Sophia Antipolis, France.
4 IRD, Sorbonne Université, UMMISCO, Bondy, France.
@article{MMNP_2021_16_a29,
     author = {Clotilde Djuikem and Fr\'ed\'eric Grognard and Roger Tagne Wafo and Suzanne Touzeau and Samuel Bowong},
     title = {Modelling coffee leaf rust dynamics to control its spread},
     journal = {Mathematical modelling of natural phenomena},
     eid = {26},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021018/}
}
TY  - JOUR
AU  - Clotilde Djuikem
AU  - Frédéric Grognard
AU  - Roger Tagne Wafo
AU  - Suzanne Touzeau
AU  - Samuel Bowong
TI  - Modelling coffee leaf rust dynamics to control its spread
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021018/
DO  - 10.1051/mmnp/2021018
LA  - en
ID  - MMNP_2021_16_a29
ER  - 
%0 Journal Article
%A Clotilde Djuikem
%A Frédéric Grognard
%A Roger Tagne Wafo
%A Suzanne Touzeau
%A Samuel Bowong
%T Modelling coffee leaf rust dynamics to control its spread
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021018/
%R 10.1051/mmnp/2021018
%G en
%F MMNP_2021_16_a29
Clotilde Djuikem; Frédéric Grognard; Roger Tagne Wafo; Suzanne Touzeau; Samuel Bowong. Modelling coffee leaf rust dynamics to control its spread. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 26. doi : 10.1051/mmnp/2021018. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021018/

[1] G.N. Agrios, Plant Pathology. Academic Press, San Diego, USA, 4 edition (1997).

[2] P.A. Arneson Coffee rust The Plant Health Instructor 2011

[3] J. Arroyo-Esquivel, F. Sanchez, L.A. Barboza Infection model for analyzing biological control of coffee rust using bacterial anti-fungal compounds Math. Biosci 2019 13 24

[4] J. Avelino, L. Willocquet, S. Savary Effects of crop management patterns on coffee rust epidemics Plant Pathol 2004 541 547

[5] J. Avelino, H. Zelaya, A. Merlo, A. Pineda, M. Ordóñez, S. Savary The intensity of a coffee rust epidemic is dependent on production situations Ecol. Model 2006 431 447

[6] D.P. Bebber, Á.D. Castillo, S.J. Gurr Modelling coffee leaf rust risk in Colombia with climate reanalysis data Philos. Trans. Royal Soc. B: Biol. Sci 2016 20150458

[7] J.A.M. Bedimo, B.P. Dufour, C. Cilas, J. Avelino Effets des arbres d’ombrage sur les bioagresseurs de Coffea arabica Cahiers Agric 2012 89 97

[8] K.R. Bock Dispersal of uredospores of Hemileia vastatrix under field conditions Trans. Br. Mycolog. Soc 1962 63 74

[9] J.-B. Burie, A. Calonnec and M. Langlais, Modeling of the invasion of a fungal disease over a vineyard. Vol. 2 of Mathematical Modeling of Biological Systems. Springer (2008) 11–21.

[10] A. Capucho, L. Zambolim, U. Lopes, N. Milagres Chemical control of coffee leaf rust in Coffea canephora cv. conilon Aust. Plant Pathol. 2013 667 673

[11] G. Carrion, V. Rico-Gray Mycoparasites on the coffee rust in Mexico Fungal Divers 2002 49 60

[12] C. Castillo-Chavez, B. Song Dynamical models of tuberculosis and their applications Math. Biosci. Eng 2004 361

[13] A. Charrier and J. Berthaud, Botanical classification of coffee. In Coffee. Springer (1985) 13–47.

[14] L. Galbusera, M.P.E. Marciandi, P. Bolzern and G. Ferrari-Trecate, Control schemes based on the wave equation for consensus in multi-agent systems with double-integrator dynamics. In 2007 46th IEEE Conference on Decision and Control. IEEE (2007) 1498–1503.

[15] G. Grée Epidemiology of coffee leaf rust in the Eastern Highlands Coffee Res. Inst. Newsletter 1993 16 20

[16] F. Haddad, L.A. Maffia, E.S.G. Mizubuti, H. Teixeira Biological control of coffee rust by antagonistic bacteria under field conditions in Brazil Biol. Control 2009 114 119

[17] F. Haddad, R.M. Saraiva, E.S.G. Mizubuti, R.S. Romeiro, L.A. Maffia Antifungal compounds as a mechanism to control Hemileia vastatrix by antagonistic bacteria Tropical Plant Pathol 2013 398 405

[18] Institut de Recherches du Café, du Cacao et autres plantes stimulantes (IRCC), Montpellier, France. Manuel du planteur de café Laotien (1991).

[19] International Coffee Organization, Coffee production by exporting countries. Trade statistics tables: http://www.ico.org/prices/po-production.pdf (accessed 23/2/2020).

[20] H. Kielhöfer Stability and semilinear evolution equations in Hilbert space Arch. Ratl. Mech. Anal 1974 150 165

[21] J.P. LaSalle, Vol. 25 of The stability of dynamical systems. Siam (1976).

[22] L. Mailleret, F. Grognard Global stability and optimisation of a general impulsive biological control model Math. Biosci 2009 91 100

[23] R.E. Mickens Nonstandard finite difference schemes for reaction-diffusion equations Numer. Methods Partial Differ. Equ 1999 201 214

[24] R.A. Muller, D. Berry, J. Avelino and D. Bieysse, Chap. 4 of Coffee Diseases. John Wiley Sons, Ltd (2008) 491–545.

[25] F.J. Nutman, F.M. Roberts, R.T. Clarke Studies on the biology of hemileia vastatrix berk. br Trans. Br. Mycolog. Soc. 1963 27 44

[26] C.-V. Pao, Nonlinear parabolic and elliptic equations. Springer Science Business Media (2012).

[27] J. Papaïx, K. Adamczyk-Chauvat, A. Bouvier, K. Kiêu, S. Touzeau, C. Lannou, H. Monod Pathogen population dynamics in agricultural landscapes: The Ddal modelling framework Infect. Genetics Evol 2014 509 520

[28] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Vol. 44. Springer Science Business Media (2012).

[29] R.W. Rayner Germination and penetration studies on coffee rust (Hemileia vastatrix B. Br.). Ann. Appl. Biol 1961 497 505

[30] C.J. Rodrigues Coffee rusts: history, taxonomy, morphology, distribution and host resistance Fitopatolog. Bras 1990 5 9

[31] N. Sapoukhina, Y. Tyutyunov, I. Sache, R. Arditi Spatially mixed crops to control the stratified dispersal of airborne fungal diseases Ecol. Model 2010 2793 2800

[32] H.F. Shiomi, H.S.A. Silva, I.S.D. Melo, F.V. Nunes, W. Bettiol Bioprospecting endophytic bacteria for biological control of coffee leaf rust Sci. Agricola 2006 32 39

[33] H.S.A. Silva, J.P. Tozzi, C.R.F. Terrasan, W. Bettiol Endophytic microorganisms from coffee tissues as plant growth promoters and biocontrol agents of coffee leaf rust Biol. Control 2012 62 67

[34] J.-B. Suchel Quelques remarques à propos de la répartition des pluies au Cameroun durant la période sèche 1969–1973 Hommes et Terres du Nord 1983 24 28

[35] C. Tadmon, S. Foko Modeling and mathematical analysis of an initial boundary value problem for hepatitis b virus infection J. Math. Anal. Appl 2019 309 350

[36] V.M. Toledo, P. Moguel Coffee and sustainability: the multiple values of traditional shaded coffee J. Sustain. Agric 2012 353 377

[37] J. Vandermeer, Z. Hajian-Forooshani, I. Perfecto The dynamics of the coffee rust disease: an epidemiological approach using network theory Eur. J. Plant Pathol 2018 1001 1010

[38] J. Vandermeer, D. Jackson, I. Perfecto Qualitative dynamics of the coffee rust epidemic: educating intuition with theoretical ecology BioScience 2014 210 218

[39] J. Vandermeer, I. Perfecto, H. Liere Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web Plant Pathol 2009 636 641

[40] J. Vandermeer and P. Rohani, The interaction of regional and local in the dynamics of the coffee rust disease. Preprint arXiv:1407.8247 (2014).

[41] J.M. Waller Coffee rust–epidemiology and control Crop Protect 1982 385 404

[42] J. Wang, J. Yang, T. Kuniya Dynamics of a pde viral infection model incorporating cell-to-cell transmission J. Math. Anal. Appl 2016 1542 1564

[43] A. Yagi, Abstract parabolic evolution equations and their applications. Springer Science Business Media (2009).

[44] L. Zambolim, M.C. Chaves Efeito de baixas temperaturas e do binomio temperatura-umidade relativa sobre a viabilidade dos uredosporos de Hemileia vastatrix Berk. et Br. e Uromyces phaseoli typica arth Experientiae (Brasil) 1974 151 184

[45] W. Zhu Global exponential stability of impulsive reaction–diffusion equation with variable delays Appl. Math. Comput 2008 362 369

Cité par Sources :