Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross-diffusions
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 25.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we investigate the non-constant stationary solutions of a general Gause-type predator-prey system with self- and cross-diffusions subject to the homogeneous Neumann boundary condition. In the system, the cross-diffusions are introduced in such a way that the prey runs away from the predator, while the predator moves away from a large group of preys. Firstly, we establish a priori estimate for the positive solutions. Secondly, we study the non-existence results of non-constant positive solutions. Finally, we consider the existence of non-constant positive solutions and discuss the Turing instability of the positive constant solution.
DOI : 10.1051/mmnp/2021017

Pan Xue 1 ; Yunfeng Jia 2 ; Cuiping Ren 1 ; Xingjun Li 1

1 School of General Education, Xi’an Eurasia University, Xi’an, Shaanxi 710065, China.
2 School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, Shaanxi 710062, China.
@article{MMNP_2021_16_a44,
     author = {Pan Xue and Yunfeng Jia and Cuiping Ren and Xingjun Li},
     title = {Non-constant positive solutions of a general {Gause-type} predator-prey system with self- and cross-diffusions},
     journal = {Mathematical modelling of natural phenomena},
     eid = {25},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021017/}
}
TY  - JOUR
AU  - Pan Xue
AU  - Yunfeng Jia
AU  - Cuiping Ren
AU  - Xingjun Li
TI  - Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross-diffusions
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021017/
DO  - 10.1051/mmnp/2021017
LA  - en
ID  - MMNP_2021_16_a44
ER  - 
%0 Journal Article
%A Pan Xue
%A Yunfeng Jia
%A Cuiping Ren
%A Xingjun Li
%T Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross-diffusions
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021017/
%R 10.1051/mmnp/2021017
%G en
%F MMNP_2021_16_a44
Pan Xue; Yunfeng Jia; Cuiping Ren; Xingjun Li. Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross-diffusions. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 25. doi : 10.1051/mmnp/2021017. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021017/

[1] J.H.P. Dawes, M.O. Souza A derivation of Hollingís type I, II and III functional responses in predator-prey systems J. Theoret. Biol 2013 11 22

[2] D.T. Dimitrov, H.V. Kojouharov Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis Appl. Math. Comput 2005 523 538

[3] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equation of Second Order. Springer-Verlag, Berlin (2001).

[4] N.S. Goel, S.C. Maitra On the Volterra and other nonlinear models of interacting populations Rev. Modern Phys 1971 231 276

[5] Y. Jia A sufficient and necessary condition for the existence of positive solutions for a prey-predator system with Ivlev-type functional response Appl. Math. Lett 2011 1084 1088

[6] Y. Jia, J. Wu, H.-K. Xu Positive solutions for a predator-prey interaction model with Hollings-type functional response and diffusion Taiwan. J. Math 2011 2013 2034

[7] Y. Jia, J. Wu, H.-K. Xu Positive solutions of a Lotka-Volterra competition model with cross-diffusion Comput. Math. Appl 2014 1220 1228

[8] Y. Jia, P. Xue Effects of the self- and cross-diffusion on positive steady states for a generalized predator-prey system Nonlinear Anal. Real World Appl 2016 229 241

[9] W. Ko, K. Ryu A qualitative study on general Gause-type predator-prey models with constant diffusion rates J. Math. Anal. Appl 2008 217 230

[10] J. Leray, J. Schauder Topologie et équations fonctionnelles Ann. Sci. École Norm. Sup. 1934 45 78

[11] C.-S. Lin, W.-M. Ni, I. Takagi Large amplitude stationary solutions to a chemotaxis system J. Differ. Equ 1988 1 27

[12] Y. Lou, W.-M. Ni, S. Yotsutani On a limiting system in the Lotka-Volterra competition with cross-diffusion Discret. Contin. Dyn. Syst 2004 435 458

[13] Y. Lou, W.-M. Ni Diffusion, self-diffusion and cross-diffusion J. Differ. Equ 1996 79 131

[14] A. Madzvamuse, H.S. Ndakwo, R. Barreira Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations J. Math. Biol 2014 262 292

[15] Q. Meng, L. Yang Steady state in a cross-diffusion predator-prey model with the Beddington-DeAngelis functional response Nonlinear Anal. Real World Appl 2019 401 413

[16] W.-M. Ni Diffusion, cross-diffusion and their spike-layer steady states Notices Am. Math. Soc 1998 9 18

[17] K. Oeda Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone J. Differ. Equ 2011 3988 4009

[18] A. Okubo, Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin (1980).

[19] P.Y.H. Pang, M. Wang Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion Proc. London Math. Soc 2004 135 157

[20] R. Peng, J. Shi Non-existence of non-constant positive steady states of two Holling-type II predator-prey systems: strong interaction case J. Differ. Equ 2009 866 886

[21] G. Seo, D.L. Deangelis A predator-prey model with a Holling type I functional response including a predator mutual interference J. Nonlinear Sci 2011 811 833

[22] A.A. Shaikh, H. Das, N. Ali, C. Sonck Study of LG-Holling type III predator-prey model with disease in predator J. Appl. Math. Comput 2018 235 255

[23] J. Sugie Two-parameter bifurcation in a predator-prey system of Ivlev type J. Math. Anal. Appl 1998 349 371

[24] J. Shi, Z. Xie, K. Little Cross-diffusion induced instability and stability in reaction-diffusion systems J. Appl. Anal. Comput 2011 95 119

[25] X. Zeng Non-constant positive steady states of a prey-predator system with cross-diffusions J. Math. Anal. Appl 2007 989 1009

Cité par Sources :