Voir la notice de l'article provenant de la source EDP Sciences
Pan Xue 1 ; Yunfeng Jia 2 ; Cuiping Ren 1 ; Xingjun Li 1
@article{MMNP_2021_16_a44, author = {Pan Xue and Yunfeng Jia and Cuiping Ren and Xingjun Li}, title = {Non-constant positive solutions of a general {Gause-type} predator-prey system with self- and cross-diffusions}, journal = {Mathematical modelling of natural phenomena}, eid = {25}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021017/} }
TY - JOUR AU - Pan Xue AU - Yunfeng Jia AU - Cuiping Ren AU - Xingjun Li TI - Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross-diffusions JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021017/ DO - 10.1051/mmnp/2021017 LA - en ID - MMNP_2021_16_a44 ER -
%0 Journal Article %A Pan Xue %A Yunfeng Jia %A Cuiping Ren %A Xingjun Li %T Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross-diffusions %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021017/ %R 10.1051/mmnp/2021017 %G en %F MMNP_2021_16_a44
Pan Xue; Yunfeng Jia; Cuiping Ren; Xingjun Li. Non-constant positive solutions of a general Gause-type predator-prey system with self- and cross-diffusions. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 25. doi : 10.1051/mmnp/2021017. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021017/
[1] A derivation of Hollingís type I, II and III functional responses in predator-prey systems J. Theoret. Biol 2013 11 22
,[2] Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis Appl. Math. Comput 2005 523 538
,[3] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equation of Second Order. Springer-Verlag, Berlin (2001).
[4] On the Volterra and other nonlinear models of interacting populations Rev. Modern Phys 1971 231 276
,[5] A sufficient and necessary condition for the existence of positive solutions for a prey-predator system with Ivlev-type functional response Appl. Math. Lett 2011 1084 1088
[6] Positive solutions for a predator-prey interaction model with Hollings-type functional response and diffusion Taiwan. J. Math 2011 2013 2034
, ,[7] Positive solutions of a Lotka-Volterra competition model with cross-diffusion Comput. Math. Appl 2014 1220 1228
, ,[8] Effects of the self- and cross-diffusion on positive steady states for a generalized predator-prey system Nonlinear Anal. Real World Appl 2016 229 241
,[9] A qualitative study on general Gause-type predator-prey models with constant diffusion rates J. Math. Anal. Appl 2008 217 230
,[10] Topologie et équations fonctionnelles Ann. Sci. École Norm. Sup. 1934 45 78
,[11] Large amplitude stationary solutions to a chemotaxis system J. Differ. Equ 1988 1 27
, ,[12] On a limiting system in the Lotka-Volterra competition with cross-diffusion Discret. Contin. Dyn. Syst 2004 435 458
, ,[13] Diffusion, self-diffusion and cross-diffusion J. Differ. Equ 1996 79 131
,[14] Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations J. Math. Biol 2014 262 292
, ,[15] Steady state in a cross-diffusion predator-prey model with the Beddington-DeAngelis functional response Nonlinear Anal. Real World Appl 2019 401 413
,[16] Diffusion, cross-diffusion and their spike-layer steady states Notices Am. Math. Soc 1998 9 18
[17] Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone J. Differ. Equ 2011 3988 4009
[18] A. Okubo, Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin (1980).
[19] Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion Proc. London Math. Soc 2004 135 157
,[20] Non-existence of non-constant positive steady states of two Holling-type II predator-prey systems: strong interaction case J. Differ. Equ 2009 866 886
,[21] A predator-prey model with a Holling type I functional response including a predator mutual interference J. Nonlinear Sci 2011 811 833
,[22] Study of LG-Holling type III predator-prey model with disease in predator J. Appl. Math. Comput 2018 235 255
, , ,[23] Two-parameter bifurcation in a predator-prey system of Ivlev type J. Math. Anal. Appl 1998 349 371
[24] Cross-diffusion induced instability and stability in reaction-diffusion systems J. Appl. Anal. Comput 2011 95 119
, ,[25] Non-constant positive steady states of a prey-predator system with cross-diffusions J. Math. Anal. Appl 2007 989 1009
Cité par Sources :