Voir la notice de l'article provenant de la source EDP Sciences
Hassan Khan 1 ; Rasool Shah 1 ; J.F. Gómez-Aguilar 2, 3 ; Shoaib 1 ; Dumitru Baleanu 4, 5, 6 ; Poom Kumam 7, 8
@article{MMNP_2021_16_a17, author = {Hassan Khan and Rasool Shah and J.F. G\'omez-Aguilar and Shoaib and Dumitru Baleanu and Poom Kumam}, title = {Travelling waves solution for fractional-order biological population model}, journal = {Mathematical modelling of natural phenomena}, eid = {32}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021016}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021016/} }
TY - JOUR AU - Hassan Khan AU - Rasool Shah AU - J.F. Gómez-Aguilar AU - Shoaib AU - Dumitru Baleanu AU - Poom Kumam TI - Travelling waves solution for fractional-order biological population model JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021016/ DO - 10.1051/mmnp/2021016 LA - en ID - MMNP_2021_16_a17 ER -
%0 Journal Article %A Hassan Khan %A Rasool Shah %A J.F. Gómez-Aguilar %A Shoaib %A Dumitru Baleanu %A Poom Kumam %T Travelling waves solution for fractional-order biological population model %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021016/ %R 10.1051/mmnp/2021016 %G en %F MMNP_2021_16_a17
Hassan Khan; Rasool Shah; J.F. Gómez-Aguilar; Shoaib; Dumitru Baleanu; Poom Kumam. Travelling waves solution for fractional-order biological population model. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 32. doi : 10.1051/mmnp/2021016. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021016/
[1] M.J. Ablowitz and P.A. Clarkson, Solitons, nonlinear evolution equation and inverse scattering. Cambridge University Press, New York (1991).
[2] Improved (G’/G)-expansion method for the time-fractional biological population model and Cahn–Hilliard equation J. Comput. Nonlinear Dyn 2015 051016
, , ,[3] Exact solutions of nonlinear fractional differential equations by (G’/G)-expansion method Chin. Phys. B 2013 110202
,[4] (G’/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics Commun. Theor. Phys 2012 623
[5] Exact solution to non-linear biological population model with fractional order Thermal Sci 2018 S317 S327
, , ,[6] A review of the Adomian decomposition method and its applications to fractional differential equations Commun. Fract. Calc 2012 73 99
, , ,[7] Application of expfunction method for nonlinear evolution equations with variable coefficients Phys. Lett. A 2007 62 69
, ,[8] Exact solutions of fractional-order biological population model Commun. Theor. Phys 2009 992
, ,[9] Exact solutions of KdV equation for multiple collisions of solitons Phys. Rev. Lett 1971 1192 1194
[10] A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method Chaos Solit. Fract 2018 169 177
,[11] Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method IEEE Access 2019 107523 107532
, , ,[12] N.A. Kudryashov, On one of methods for finding exact solutions of nonlinear differential equations. Preprint arXiv:1108.3288v (2011).
[13] On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law Math. Methods Appl. Sci 2020 443 457
, ,[14] On types of nonlinear non-integrable equations with exact solutions Phys. Lett. A 1991 269 275
[15] Exact solutions of generalized Kuramoto. Sivashinsky equation Phys. Lett. A 1990 287 291
[16] Extended simplest equation method for nonlinear differential equations Appl. Math. Comput 2008 396 402
,[17] Numerical solution of the space fractional Fokker-Planck equation J. Comput. Appl. Math 2004 209 219
, ,[18] Jacobi elliptic function expansion method and periodic wave solutions of non linear wave equations Phys. Lett. A 2001 69 74
, , ,[19] Analytical approach to linear fractional partial differential equations arising in fluid mechanics Phys. Lett. A 2006 271 279
,[20] Homotopy perturbation method for nonlinear partial differential equations of fractional order Phys. Lett. A 2007 345 350
,[21] Finite difference approximations for two-sided space-fractional partial differential equations Appl. Numer. Math 2006 80 90
,[22] The modified extended tanh method with the Riccati equation for solving the spacetime fractional EW and MEW equations Chaos Solit. Fractals 2017 404 409
, ,[23] Fractal-fractional study of the hepatitis C virus infection model Res. Phys 2020 103555
, ,[24] A fractional numerical study on a chronic hepatitis C virus infection model with immune response Chaos, Solit. Fract 2020 110062
, ,[25] Numerical solution of a biological population model using He’s variational iteration method Comput. Math. Appl 2007 1197 209
,[26] An efficient computational technique for local fractional Fokker Planck equation Physica A 2020 124525
, ,[27] On the local fractional wave equation in fractal strings Math. Methods Appl. Sci 2019 1588 1595
, , ,[28] Some new mathematical models of the fractional-order system of human immune against IAV infection Math. Biosci. Eng 2020 4942 4969
, , ,[29] Analytical approach for fractional extended Fisher-Kolmogorov equation with Mittag-Leffler kernel Adv. Differ. Equ 2020 1 17
, , , ,[30] The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics Phys. Lett. A 2008 417 423
, ,[31] The (G’/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics J. Math. Phys 2009 013502
,[32] Applications of an extended (G’/G)-expansion method to find exact solutions of nonlinear PDEs in mathematical physics Math. Probl. Eng 2010
,[33] Solving STO and KD equations with modified Riemann Liouville derivative using improved (G’/G)-expansion functionmethod IAENG Int. J. Appl. Math 2015 16 22
[34] An improved (G’/G)-expansion method for solving nonlinear evolution equations Int. J. Comput. Math 2010 1716 25
, ,[35] New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation SIAM J. Numer. Anal 2008 1079 1095
, , ,Cité par Sources :