Travelling waves solution for fractional-order biological population model
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 32.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we implemented the generalized and extended methods to solve fractional-order biological population models. The fractional-order derivatives are represented by the Caputo operator. The solutions of some illustrative examples are presented to show the validity of the proposed method. First, the transformation is used to reduce the given problem into ordinary differential equations. The ordinary differential equation is than solve by using modified method. Different families of traveling waves solutions are constructed to explain the different physical behavior of the targeted problems. Three important solutions, hyperbolic, rational and periodic, are investigated by using the proposed techniques. The obtained solutions within different classes have provided effective information about the targeted physical procedures. In conclusion, the present techniques are considered the best tools to analyze different families of solutions for any fractional-order problem.
DOI : 10.1051/mmnp/2021016

Hassan Khan 1 ; Rasool Shah 1 ; J.F. Gómez-Aguilar 2, 3 ; Shoaib 1 ; Dumitru Baleanu 4, 5, 6 ; Poom Kumam 7, 8

1 Department of Mathematics. Abdul Wali Khan University Mardan (AWKUM), Pakistan.
2 CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca Morelos, México
3 Consejo Académico, Universidad Virtual CNCI, Monterrey, México.
4 Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey.
5 Institute of Space Sciences, Magurele-Bucharest, Romania.
6 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China.
7 Center of Excellence in Theoretical and Computational Science (TaCS-CoE) & Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand.
8 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
@article{MMNP_2021_16_a17,
     author = {Hassan Khan and Rasool Shah and J.F. G\'omez-Aguilar and Shoaib and Dumitru Baleanu and Poom Kumam},
     title = {Travelling waves solution for fractional-order biological population model},
     journal = {Mathematical modelling of natural phenomena},
     eid = {32},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021016/}
}
TY  - JOUR
AU  - Hassan Khan
AU  - Rasool Shah
AU  - J.F. Gómez-Aguilar
AU  - Shoaib
AU  - Dumitru Baleanu
AU  - Poom Kumam
TI  - Travelling waves solution for fractional-order biological population model
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021016/
DO  - 10.1051/mmnp/2021016
LA  - en
ID  - MMNP_2021_16_a17
ER  - 
%0 Journal Article
%A Hassan Khan
%A Rasool Shah
%A J.F. Gómez-Aguilar
%A Shoaib
%A Dumitru Baleanu
%A Poom Kumam
%T Travelling waves solution for fractional-order biological population model
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021016/
%R 10.1051/mmnp/2021016
%G en
%F MMNP_2021_16_a17
Hassan Khan; Rasool Shah; J.F. Gómez-Aguilar; Shoaib; Dumitru Baleanu; Poom Kumam. Travelling waves solution for fractional-order biological population model. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 32. doi : 10.1051/mmnp/2021016. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021016/

[1] M.J. Ablowitz and P.A. Clarkson, Solitons, nonlinear evolution equation and inverse scattering. Cambridge University Press, New York (1991).

[2] D. Baleanu, Y. Ugurlu, M. Inc, B. Kilic Improved (G’/G)-expansion method for the time-fractional biological population model and Cahn–Hilliard equation J. Comput. Nonlinear Dyn 2015 051016

[3] A. Bekir, O. Guner Exact solutions of nonlinear fractional differential equations by (G’/G)-expansion method Chin. Phys. B 2013 110202

[4] Z. Bin (G’/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics Commun. Theor. Phys 2012 623

[5] S. Bushnaq, S. Ali, K. Shah, M. Arif Exact solution to non-linear biological population model with fractional order Thermal Sci 2018 S317 S327

[6] J.-S. Duan, R. Rach, D. Baleanu, A.-M. Wazwaz A review of the Adomian decomposition method and its applications to fractional differential equations Commun. Fract. Calc 2012 73 99

[7] S.A. El-Wakil, M.A. Madkour, M.A. Abdou Application of expfunction method for nonlinear evolution equations with variable coefficients Phys. Lett. A 2007 62 69

[8] A.M.A. El-Sayed, S.Z. Rida, A.A.M. Arafa Exact solutions of fractional-order biological population model Commun. Theor. Phys 2009 992

[9] R. Hirota Exact solutions of KdV equation for multiple collisions of solitons Phys. Rev. Lett 1971 1192 1194

[10] M.M. Khader, K.M. Saad A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method Chaos Solit. Fract 2018 169 177

[11] H. Khan, D. Baleanu, P. Kumam, J.F. Al-Zaidy Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method IEEE Access 2019 107523 107532

[12] N.A. Kudryashov, On one of methods for finding exact solutions of nonlinear differential equations. Preprint arXiv:1108.3288v (2011).

[13] D. Kumar, J. Singh, D. Baleanu On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law Math. Methods Appl. Sci 2020 443 457

[14] N.A. Kudryashov On types of nonlinear non-integrable equations with exact solutions Phys. Lett. A 1991 269 275

[15] N.A. Kudryashov Exact solutions of generalized Kuramoto. Sivashinsky equation Phys. Lett. A 1990 287 291

[16] N.A. Kudryashov, N.B. Loguinova Extended simplest equation method for nonlinear differential equations Appl. Math. Comput 2008 396 402

[17] F. Liu, V. Anh, I. Turner Numerical solution of the space fractional Fokker-Planck equation J. Comput. Appl. Math 2004 209 219

[18] S. Liu, Z. Fu, S. Liu, Q. Zhao Jacobi elliptic function expansion method and periodic wave solutions of non linear wave equations Phys. Lett. A 2001 69 74

[19] S. Momani, Z. Odibat Analytical approach to linear fractional partial differential equations arising in fluid mechanics Phys. Lett. A 2006 271 279

[20] S. Momani, Z. Odibat Homotopy perturbation method for nonlinear partial differential equations of fractional order Phys. Lett. A 2007 345 350

[21] M.M. Meerschaert, C. Tadjeran Finite difference approximations for two-sided space-fractional partial differential equations Appl. Numer. Math 2006 80 90

[22] K.R. Raslan, K.K. Ali, M.A. Shallal The modified extended tanh method with the Riccati equation for solving the spacetime fractional EW and MEW equations Chaos Solit. Fractals 2017 404 409

[23] K.M. Saad, M. Alqhtani, J.F. Gómez-Aguilar Fractal-fractional study of the hepatitis C virus infection model Res. Phys 2020 103555

[24] K.M. Saad, J.F. Gómez-Aguilar, A.A. Almadiy A fractional numerical study on a chronic hepatitis C virus infection model with immune response Chaos, Solit. Fract 2020 110062

[25] F. Shakeri, M. Dehghan Numerical solution of a biological population model using He’s variational iteration method Comput. Math. Appl 2007 1197 209

[26] J. Singh, H. Kamil Jassim, D. Kumar An efficient computational technique for local fractional Fokker Planck equation Physica A 2020 124525

[27] J. Singh, D. Kumar, D. Baleanu, S. Rathore On the local fractional wave equation in fractal strings Math. Methods Appl. Sci 2019 1588 1595

[28] H.M. Srivastava, K.M. Saad, J.F. Gómez-Aguilar, A.A. Almadiy Some new mathematical models of the fractional-order system of human immune against IAV infection Math. Biosci. Eng 2020 4942 4969

[29] P. Veeresha, D.G. Prakasha, J. Singh, I. Khan, D. Kumar Analytical approach for fractional extended Fisher-Kolmogorov equation with Mittag-Leffler kernel Adv. Differ. Equ 2020 1 17

[30] M. Wang, X. Li, J. Zhang The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics Phys. Lett. A 2008 417 423

[31] E.M.E. Zayed, K.A. Gepreel The (G’/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics J. Math. Phys 2009 013502

[32] E.M.E. Zayed, S. Al-Joudi Applications of an extended (G’/G)-expansion method to find exact solutions of nonlinear PDEs in mathematical physics Math. Probl. Eng 2010

[33] Y. Zhang Solving STO and KD equations with modified Riemann Liouville derivative using improved (G’/G)-expansion functionmethod IAENG Int. J. Appl. Math 2015 16 22

[34] J. Zhang, F. Jiang, X. Zhao An improved (G’/G)-expansion method for solving nonlinear evolution equations Int. J. Comput. Math 2010 1716 25

[35] P. Zhuang, F. Liu, V. Anh, I. Turner New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation SIAM J. Numer. Anal 2008 1079 1095

Cité par Sources :