Voir la notice de l'article provenant de la source EDP Sciences
Nguyen Duc Phuong 1 ; Nguyen Anh Tuan 2 ; Devendra Kumar 3 ; Nguyen Huy Tuan 2
@article{MMNP_2021_16_a16, author = {Nguyen Duc Phuong and Nguyen Anh Tuan and Devendra Kumar and Nguyen Huy Tuan}, title = {Initial value problem for fractional {Volterra} integrodifferential pseudo-parabolic equations}, journal = {Mathematical modelling of natural phenomena}, eid = {27}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021015}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021015/} }
TY - JOUR AU - Nguyen Duc Phuong AU - Nguyen Anh Tuan AU - Devendra Kumar AU - Nguyen Huy Tuan TI - Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021015/ DO - 10.1051/mmnp/2021015 LA - en ID - MMNP_2021_16_a16 ER -
%0 Journal Article %A Nguyen Duc Phuong %A Nguyen Anh Tuan %A Devendra Kumar %A Nguyen Huy Tuan %T Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021015/ %R 10.1051/mmnp/2021015 %G en %F MMNP_2021_16_a16
Nguyen Duc Phuong; Nguyen Anh Tuan; Devendra Kumar; Nguyen Huy Tuan. Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 27. doi : 10.1051/mmnp/2021015. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021015/
[1] Abstract Volterra integrodifferential equations with applications to parabolic models with memory Math. Ann 2017 1131 1175
,[2] Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations Trans. Am. Math. Soc 2000 285 310
,[3] A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel Adv. Diff. Equ 2018 353
, , ,[4] A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative Chaos Solitons Fract 2020 109705
, , ,[5] The fractional features of a harmonic oscillator with position-dependent mass Commun. Theor. Phys 2020 055002 55010
, , ,[6] Boundary value problems for a pseudo-parabolic equation with the Caputo fractional derivative Differ. Equ 2019 884 893
[7] Cauchy problems of semilinear pseudo-parabolic equations J. Diff. Equ 2009 4568 4590
, ,[8] Cauchy problems of semilinear pseudo-parabolic equations J. Diff. Equ 2009 4568 4590
, ,[9] Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems. Disc. Cont. Dyn. Syst. Ser. A 2014 79 98
, , ,[10] Maximum principles for the fractional p-Laplace and symmetry of solutions Adv. Math 2018 735 758
,[11] Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity J. Differ. Equ 2015 4424 4442
,[12] Hitchhiker’s guide to the fractional Sobolev spaces Bull. Sci. Math 2012 521 573
, ,[13] R. Gorenfloo, A.A. Kilbas and F. Mainardi, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014).
[14] A new fractional HRSV model and its optimal control: a non-singular operator approach Physica A 2020 123860
, , ,[15] On the fractional optimal control problems with a general derivative operator Asian J. Cont 2019
,[16] Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity J. Differ. Equ 2016 5446 5464
, ,[17] The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation Comput. Math. Appl 2017 2221 2232
, ,[18] Spline collocation methods for seismic analysis of multiple degree of freedom systems with visco-elastic dampers using fractional models J. Vibr. Contr 2020 1445 1462
, , ,[19] Global existence and blow up of solutions for pseudo-parabolic equation with singular potential J. Diff. Equ 2020 4914 4959
, ,[20] Asymptotic behaviour of solutions to some pseudo-parabolic equations Appl. Math. Lett 2012 111 114
, ,[21] The M-Wright function in time-fractional diffusion processes: a tutorial survey Int. J. Differ. Equ 2010
, ,[22] Fractional Brownian motions, fractional noises and applications SIAM Rev 1968 422 437
,[23] Effect of aggregation on population recovery modeled by a forward-backward pseudo-parabolic equation Trans. Amer. Math. Soc 2004 2739 2756
[24] Smoothing effect and propagations of singularities for viscoelastic plates J. Math. Anal. Appl 1997 397 427
,[25] A numerical study of eigenvalues and eigenfunctions of fractional Sturm-Liouville problems via Laplace transform Indian J. Pure Appl. Math 2020 857 868
, ,[26] A new adaptive synchronization and hyperchaos control of a biological snap oscillator Chaos Solitons Fract 2020 13
, , ,[27] Collocation methods for terminal value problems of tempered fractional differential equations Appl. Numer. Math 2020 385 395
, ,[28] Numerical solution of some fractional dynamical systems in medicine involving non-singular kernel with vector order Results Nonlinear Anal 2019 160 168
,[29] System of fractional differential algebraic equations with applications Chaos Solitons Fractals 2019 203 212
,[30] Pseudo-parabolic partial differential equations SIAM J. Math. Anal 1970 1 26
,[31] Semilinear Caputo time-fractional pseudo-parabolic equations Commun. Pure Appl. Anal 2021 583 621
, ,[32] Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations J. Funct. Anal 2013 2732 2763
,Cité par Sources :