Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 27.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we investigate a initial value problem for the Caputo time-fractional pseudo-parabolic equations with fractional Laplace operator of order 0 ν ≤ 1 and the nonlinear memory source term. For 0 ν 1, the problem will be considered on a bounded domain of ℝd. By some Sobolev embeddings and the properties of the Mittag-Leffler function, we will give some results on the existence and the uniqueness of mild solution for problem (1.1) below. When ν = 1, we will introduce some Lp − Lq estimates, and based on them we derive the global existence of a mild solution in the whole space ℝd.
DOI : 10.1051/mmnp/2021015

Nguyen Duc Phuong 1 ; Nguyen Anh Tuan 2 ; Devendra Kumar 3 ; Nguyen Huy Tuan 2

1 Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, Vietnam.
2 Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam.
3 Department of Mathematics, University of Rajasthan, Jaipur 302004, Rajasthan, India.
@article{MMNP_2021_16_a16,
     author = {Nguyen Duc Phuong and Nguyen Anh Tuan and Devendra Kumar and Nguyen Huy Tuan},
     title = {Initial value problem for fractional {Volterra} integrodifferential pseudo-parabolic equations},
     journal = {Mathematical modelling of natural phenomena},
     eid = {27},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021015},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021015/}
}
TY  - JOUR
AU  - Nguyen Duc Phuong
AU  - Nguyen Anh Tuan
AU  - Devendra Kumar
AU  - Nguyen Huy Tuan
TI  - Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021015/
DO  - 10.1051/mmnp/2021015
LA  - en
ID  - MMNP_2021_16_a16
ER  - 
%0 Journal Article
%A Nguyen Duc Phuong
%A Nguyen Anh Tuan
%A Devendra Kumar
%A Nguyen Huy Tuan
%T Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021015/
%R 10.1051/mmnp/2021015
%G en
%F MMNP_2021_16_a16
Nguyen Duc Phuong; Nguyen Anh Tuan; Devendra Kumar; Nguyen Huy Tuan. Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 27. doi : 10.1051/mmnp/2021015. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021015/

[1] B. Andrade, A. Viana Abstract Volterra integrodifferential equations with applications to parabolic models with memory Math. Ann 2017 1131 1175

[2] J.M. Arrieta, A.N. Carvalho Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations Trans. Am. Math. Soc 2000 285 310

[3] D. Baleanu, B. Shiri, H.M. Srivastava, M. Al Qurashi A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel Adv. Diff. Equ 2018 353

[4] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative Chaos Solitons Fract 2020 109705

[5] D. Baleanu, A. Jajarmi, S.S. Sajjadi, J.H. Asad The fractional features of a harmonic oscillator with position-dependent mass Commun. Theor. Phys 2020 055002 55010

[6] M.Kh. Beshtokov Boundary value problems for a pseudo-parabolic equation with the Caputo fractional derivative Differ. Equ 2019 884 893

[7] Y. Cao, J. Yin, C. Wang Cauchy problems of semilinear pseudo-parabolic equations J. Diff. Equ 2009 4568 4590

[8] Y. Cao, J. Yin, C. Wang Cauchy problems of semilinear pseudo-parabolic equations J. Diff. Equ 2009 4568 4590

[9] Y. Chen, H. Gao, M. Garrido-Atienza, B. Schmalfuß Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems. Disc. Cont. Dyn. Syst. Ser. A 2014 79 98

[10] W. Chen, C. Li Maximum principles for the fractional p-Laplace and symmetry of solutions Adv. Math 2018 735 758

[11] H. Chen, S. Tian Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity J. Differ. Equ 2015 4424 4442

[12] E. Di Nezza, G. Palatucci, E. Valdinoci Hitchhiker’s guide to the fractional Sobolev spaces Bull. Sci. Math 2012 521 573

[13] R. Gorenfloo, A.A. Kilbas and F. Mainardi, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014).

[14] A. Jajarmi, A. Yusuf, D. Baleanu, M. Inc A new fractional HRSV model and its optimal control: a non-singular operator approach Physica A 2020 123860

[15] A Jajarmi, D. Baleanu On the fractional optimal control problems with a general derivative operator Asian J. Cont 2019

[16] S. Ji, J. Yin, Y. Cao Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity J. Differ. Equ 2016 5446 5464

[17] L. Jin, L. Li, S. Fang The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation Comput. Math. Appl 2017 2221 2232

[18] E.D. Khiabani, H. Ghaffarzadeh, B. Shiri, J. Katebi Spline collocation methods for seismic analysis of multiple degree of freedom systems with visco-elastic dampers using fractional models J. Vibr. Contr 2020 1445 1462

[19] W. Lian, J. Wang, R. Xu Global existence and blow up of solutions for pseudo-parabolic equation with singular potential J. Diff. Equ 2020 4914 4959

[20] Y. Liu, W. Jiang, F. Huang Asymptotic behaviour of solutions to some pseudo-parabolic equations Appl. Math. Lett 2012 111 114

[21] F. Mainardi, A. Mura, G. Pagnini The M-Wright function in time-fractional diffusion processes: a tutorial survey Int. J. Differ. Equ 2010

[22] B.B. Mandelbrot, J.W.V Ness Fractional Brownian motions, fractional noises and applications SIAM Rev 1968 422 437

[23] V. Padron Effect of aggregation on population recovery modeled by a forward-backward pseudo-parabolic equation Trans. Amer. Math. Soc 2004 2739 2756

[24] J.E.M. Rivera, L.H. Fatori Smoothing effect and propagations of singularities for viscoelastic plates J. Math. Anal. Appl 1997 397 427

[25] M.K. Sadabad, A.J. Akbarfam, B. Shiri A numerical study of eigenvalues and eigenfunctions of fractional Sturm-Liouville problems via Laplace transform Indian J. Pure Appl. Math 2020 857 868

[26] S.S. Sajjadi, D. Baleanu, A. Jajarmi, H.M. Pirouz A new adaptive synchronization and hyperchaos control of a biological snap oscillator Chaos Solitons Fract 2020 13

[27] B. Shiri, G.-C. Wu, D. Baleanu Collocation methods for terminal value problems of tempered fractional differential equations Appl. Numer. Math 2020 385 395

[28] B. Shiri, D. Baleanu Numerical solution of some fractional dynamical systems in medicine involving non-singular kernel with vector order Results Nonlinear Anal 2019 160 168

[29] B. Shiri, D. Baleanu System of fractional differential algebraic equations with applications Chaos Solitons Fractals 2019 203 212

[30] R.E. Showalter, T.W. Ting Pseudo-parabolic partial differential equations SIAM J. Math. Anal 1970 1 26

[31] N.H. Tuan, V.V. Au, R. Xu Semilinear Caputo time-fractional pseudo-parabolic equations Commun. Pure Appl. Anal 2021 583 621

[32] R. Xu, J. Su Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations J. Funct. Anal 2013 2732 2763

Cité par Sources :