A theoretical investigation of the frisbee motion of red blood cells in shear flow
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 23.

Voir la notice de l'article provenant de la source EDP Sciences

The dynamics of a single red blood cell in shear flow is a fluid–structure interaction problem that yields a tremendous richness of behaviors, as a function of the parameters of the problem. A low shear rates, the deformations of the red blood cell remain small and low-order models have been developed, predicting the orientation of the cell and the membrane circulation along time. They reproduce the dynamics observed in experiments and in simulations, but they do not simplify the problem enough to enable simple interpretations of the phenomena. In a process of exploring the red blood cell dynamics at low shear rates, an existing model constituted of 5 nonlinear ordinary differential equations is rewritten using quaternions to parametrize the rotations of the red blood cell. Techniques from algebraic geometry are then used to determine the steady-state solutions of the problems. These solutions are relevant to a particular regime where the red blood cell reaches a constant inclination angle, with its membrane rotating around it, and referred to as frisbee motion. Comparing the numerical solutions of the model to the steady-state solutions allows a better understanding of the transition between the most emblematic motions of red blood cells, flipping and tank-treading.
DOI : 10.1051/mmnp/2021014

Thierry Mignon 1 ; Simon Mendez 1

1 Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, 34095 Montpellier, France.
@article{MMNP_2021_16_a40,
     author = {Thierry Mignon and Simon Mendez},
     title = {A theoretical investigation of the frisbee motion of red blood cells in shear flow},
     journal = {Mathematical modelling of natural phenomena},
     eid = {23},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021014/}
}
TY  - JOUR
AU  - Thierry Mignon
AU  - Simon Mendez
TI  - A theoretical investigation of the frisbee motion of red blood cells in shear flow
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021014/
DO  - 10.1051/mmnp/2021014
LA  - en
ID  - MMNP_2021_16_a40
ER  - 
%0 Journal Article
%A Thierry Mignon
%A Simon Mendez
%T A theoretical investigation of the frisbee motion of red blood cells in shear flow
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021014/
%R 10.1051/mmnp/2021014
%G en
%F MMNP_2021_16_a40
Thierry Mignon; Simon Mendez. A theoretical investigation of the frisbee motion of red blood cells in shear flow. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 23. doi : 10.1051/mmnp/2021014. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021014/

[1] M. Abkarian, M. Faivre, A. Viallat Swinging of red blood cells under shear flow Phys. Rev. Lett 2007 188302

[2] M. Abkarian and A. Viallat, fluid–structure Interactions in Low-Reynolds-Number Flows. On the importance of red blood cells deformability in blood flow. Royal Society of Chemistry (2016) 347–462.

[3] S.K. Ballas, N. Mohandas Sickle red cell microrheology and sickle blood rheology Microcirculation 2004 209 225

[4] M. Bitbol Red blood cell orientation in orbit C Biophys. J 1986 1055 1068

[5] F.P. Bretherton The motion of rigid particles in a shear flow at low Reynolds number J. Fluid Mech 1962 284 304

[6] S. Chien Shear dependence of effective cell volume as a determinant of blood viscosity Science 1970 977 979

[7] D. Cordasco, P. Bagchi Orbital drift of capsules and red blood cells in shear flow Phys. Fluids 2013 091902

[8] D. Cordasco, P. Bagchi Comparison of erythrocyte dynamics in shear flow under different stress-free configurations Phys. Fluids 2014 041902

[9] W.R. Dodson, P. Dimitrakopoulos Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling Biophys. J 2010 2906 2916

[10] J. Dupire, M. Socol, A. Viallat Full dynamics of a red blood cell in shear flow Proc. Natl. Acad. Sci. USA 2012 20808 20813

[11] J. Dupire, M. Abkarian, A. Viallat A simple model to understand the effect of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow Soft Matter 2015 8372 8382

[12] C.D. Eggleton, A.S. Popel Large deformation of red blood cell ghosts in a simple shear flow Phys. Fluids 1998 1834 1845

[13] D. Eisenbud, Commutative algebra with a view toward algebraic geometry. In Vol. 150 of Graduate Texts in Mathematics. Springer-Verlag, Berlin and New York (1995).

[14] T.M. Fischer On the energy dissipation in a tank-treading human red blood cell Biophys. J 1980 863 868

[15] T.M. Fischer Shape memory of human red blood cells Biophys. J 2004 3304 3313

[16] T.M. Fischer, M. Stöhr-Liesen, H. Schmid-Schönbein The red cell as a fluid droplet: Tank tread-like motion of the human erythrocyte membrane in shear flow Science 1978 894 896

[17] Y.C. Fung, Biomechanics – Mechanical properties of living tissues. Springer-Verlag, 2nd edition (1993).

[18] H.L. Goldsmith, J. Marlow Flow behaviour of erythrocytes. I. Rotation and deformation in dilute suspensions Proc. Royal Soc. London B 1972 351 384

[19] G.B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid Proc. Royal Soc. London A 1922 161 179

[20] S.R. Keller, R. Skalak Motion of a tank-treading ellipsoidal particle in a shear flow J. Fluid Mech 1982 27 47

[21] L. Lanotte, J. Mauer, S. Mendez, D.A. Fedosov, J.-M. Fromental, V. Claveria, F. Nicoud, G. Gompper, M. Abkarian Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions Proc. Natl. Acad. Sci. USA 2016 13289 13294

[22] J. Mauer, S. Mendez, L. Lanotte, F. Nicoud, M. Abkarian, G. Gompper, D.A. Fedosov Flow-induced transitions of red blood cell shapes under shear Phys. Rev. Lett 2018 118103

[23] S. Mendez, M. Abkarian In-plane elasticity controls the full dynamics of red blood cells in shear flow Phys. Rev. Fluids 2018 101101(R)

[24] S. Mendez and M. Abkarian, Dynamics of Blood Cell Suspensions in Microflows, Single Red Blood Cell Dynamics in Shear Flow andtheir Role in Hemorheology. CRC Press (2019).

[25] S. Mendez, E. Gibaud, F. Nicoud An unstructured solver for simulations of deformable particles in flows at arbitrary Reynoldsnumbers J. Comput. Phys 2014 465 483

[26] C. Minetti, V. Audemar, T. Podgorski, G. Coupier Dynamics of a large population of red blood cells under shear flow J. Fluid Mech 2019 408 448

[27] N. Mohandas, P.G. Gallagher Red cell membrane: past, present, and future Blood 2008 3939 3948

[28] Z. Peng, R.J. Asaro, Q. Zhu Multiscale modelling of erythrocytes in Stokes flow J. Fluid Mech 2011 299 337

[29] Z. Peng, A. Mashayekh, Q. Zhu Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton J. Fluid Mech 2014 96 118

[30] Z. Peng, S. Salehyar, Q. Zhu Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states J. Fluid Mech 2015 449 467

[31] I.V. Pivkin, Z. Peng, G.E. Karniadakis, P. Buffet, M. Dao, S. Suresh Biomechanics of red blood cells in human spleen and consequences for physiology and disease Proc. Natl. Acad. Sci. USA 2016 7804 7809

[32] A.S. Popel, P.C. Johnson Microcirculation and hemorheology Annu. Rev. Fluid Mech. 2005 43 69

[33] H. Schmid-Schönbein, R. Wells Fluid drop-like transition of erythrocytes under shear Science 1969 288 291

[34] T.W. Secomb, R. Skalak Surface flow of viscoelastic membranes in viscous fluids Quart. J. Mech. Appl. Math 1982 233 247

[35] J. Sigüenza, S. Mendez, F. Nicoud How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics? Biomech. Model. Mechanobiol. 2017 1645 1657

[36] K. Sinha, M.D. Graham Dynamics of a single red blood cell in simple shear flow Phys. Rev. E 2015 042710

[37] J.M. Skotheim, T.W. Secomb Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition Phys. Rev. Lett 2007 078301

[38] Y. Sui, Y.T. Chew, P. Roy, Y.P. Cheng, H.T. Low Dynamic motion of red blood cells in simple shear flow Phys. Fluids 2008 112106

[39] N. Takeishi, M.E. Rosti, Y. Imai, S. Wada, Brand Haemorheology in dilute, semi-dilute and dense suspensions of red blood cells J. Fluid Mech 2019 818 848

[40] R. Tran-Son-Tay, S.P. Sutera, P.R. Rao Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion Biophys. J 1984 65 72

[41] K.-I. Tsubota, S. Wada, H. Liu Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion Biomech. Model. Mechanobiol 2014 735 746

[42] P.M. Vlahovska, Y.-N. Young, G. Danker, C. Misbah Dynamics of a non-spherical microcapsule with incompressible interface in shear flow J. Fluid Mech 2011 221 247

[43] J. von zur Gathen and J. Gerhard, Modern Computer Algebra. Cambridge University Press, New York, NY, USA, 3rd edition (2013).

[44] W. Yao, Z. Wen, Z. Yan, D. Sun, W. Ka, L. Xie, S. Chien Low viscosity Ektacytometry and its validation tested by flow chamber J. Biomech 2001 1501 1509

[45] A.Z.K. Yazdani, R.M. Kalluri, P. Bagchi Tank-treading and tumbling frequencies of capsules and red blood cells Phys. Rev. E 2011 046305

Cité par Sources :