Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2021_16_a40, author = {Thierry Mignon and Simon Mendez}, title = {A theoretical investigation of the frisbee motion of red blood cells in shear flow}, journal = {Mathematical modelling of natural phenomena}, eid = {23}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021014}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021014/} }
TY - JOUR AU - Thierry Mignon AU - Simon Mendez TI - A theoretical investigation of the frisbee motion of red blood cells in shear flow JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021014/ DO - 10.1051/mmnp/2021014 LA - en ID - MMNP_2021_16_a40 ER -
%0 Journal Article %A Thierry Mignon %A Simon Mendez %T A theoretical investigation of the frisbee motion of red blood cells in shear flow %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021014/ %R 10.1051/mmnp/2021014 %G en %F MMNP_2021_16_a40
Thierry Mignon; Simon Mendez. A theoretical investigation of the frisbee motion of red blood cells in shear flow. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 23. doi : 10.1051/mmnp/2021014. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021014/
[1] Swinging of red blood cells under shear flow Phys. Rev. Lett 2007 188302
, ,[2] M. Abkarian and A. Viallat, fluid–structure Interactions in Low-Reynolds-Number Flows. On the importance of red blood cells deformability in blood flow. Royal Society of Chemistry (2016) 347–462.
[3] Sickle red cell microrheology and sickle blood rheology Microcirculation 2004 209 225
,[4] Red blood cell orientation in orbit C Biophys. J 1986 1055 1068
[5] The motion of rigid particles in a shear flow at low Reynolds number J. Fluid Mech 1962 284 304
[6] Shear dependence of effective cell volume as a determinant of blood viscosity Science 1970 977 979
[7] Orbital drift of capsules and red blood cells in shear flow Phys. Fluids 2013 091902
,[8] Comparison of erythrocyte dynamics in shear flow under different stress-free configurations Phys. Fluids 2014 041902
,[9] Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling Biophys. J 2010 2906 2916
,[10] Full dynamics of a red blood cell in shear flow Proc. Natl. Acad. Sci. USA 2012 20808 20813
, ,[11] A simple model to understand the effect of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow Soft Matter 2015 8372 8382
, ,[12] Large deformation of red blood cell ghosts in a simple shear flow Phys. Fluids 1998 1834 1845
,[13] D. Eisenbud, Commutative algebra with a view toward algebraic geometry. In Vol. 150 of Graduate Texts in Mathematics. Springer-Verlag, Berlin and New York (1995).
[14] On the energy dissipation in a tank-treading human red blood cell Biophys. J 1980 863 868
[15] Shape memory of human red blood cells Biophys. J 2004 3304 3313
[16] The red cell as a fluid droplet: Tank tread-like motion of the human erythrocyte membrane in shear flow Science 1978 894 896
, ,[17] Y.C. Fung, Biomechanics – Mechanical properties of living tissues. Springer-Verlag, 2nd edition (1993).
[18] Flow behaviour of erythrocytes. I. Rotation and deformation in dilute suspensions Proc. Royal Soc. London B 1972 351 384
,[19] The motion of ellipsoidal particles immersed in a viscous fluid Proc. Royal Soc. London A 1922 161 179
[20] Motion of a tank-treading ellipsoidal particle in a shear flow J. Fluid Mech 1982 27 47
,[21] Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions Proc. Natl. Acad. Sci. USA 2016 13289 13294
, , , , , , , ,[22] Flow-induced transitions of red blood cell shapes under shear Phys. Rev. Lett 2018 118103
, , , , , ,[23] In-plane elasticity controls the full dynamics of red blood cells in shear flow Phys. Rev. Fluids 2018 101101(R)
,[24] S. Mendez and M. Abkarian, Dynamics of Blood Cell Suspensions in Microflows, Single Red Blood Cell Dynamics in Shear Flow andtheir Role in Hemorheology. CRC Press (2019).
[25] An unstructured solver for simulations of deformable particles in flows at arbitrary Reynoldsnumbers J. Comput. Phys 2014 465 483
, ,[26] Dynamics of a large population of red blood cells under shear flow J. Fluid Mech 2019 408 448
, , ,[27] Red cell membrane: past, present, and future Blood 2008 3939 3948
,[28] Multiscale modelling of erythrocytes in Stokes flow J. Fluid Mech 2011 299 337
, ,[29] Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton J. Fluid Mech 2014 96 118
, ,[30] Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states J. Fluid Mech 2015 449 467
, ,[31] Biomechanics of red blood cells in human spleen and consequences for physiology and disease Proc. Natl. Acad. Sci. USA 2016 7804 7809
, , , , ,[32] Microcirculation and hemorheology Annu. Rev. Fluid Mech. 2005 43 69
,[33] Fluid drop-like transition of erythrocytes under shear Science 1969 288 291
,[34] Surface flow of viscoelastic membranes in viscous fluids Quart. J. Mech. Appl. Math 1982 233 247
,[35] How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics? Biomech. Model. Mechanobiol. 2017 1645 1657
, ,[36] Dynamics of a single red blood cell in simple shear flow Phys. Rev. E 2015 042710
,[37] Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition Phys. Rev. Lett 2007 078301
,[38] Dynamic motion of red blood cells in simple shear flow Phys. Fluids 2008 112106
, , , ,[39] Haemorheology in dilute, semi-dilute and dense suspensions of red blood cells J. Fluid Mech 2019 818 848
, , , ,[40] Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion Biophys. J 1984 65 72
, ,[41] Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion Biomech. Model. Mechanobiol 2014 735 746
, ,[42] Dynamics of a non-spherical microcapsule with incompressible interface in shear flow J. Fluid Mech 2011 221 247
, , ,[43] J. von zur Gathen and J. Gerhard, Modern Computer Algebra. Cambridge University Press, New York, NY, USA, 3rd edition (2013).
[44] Low viscosity Ektacytometry and its validation tested by flow chamber J. Biomech 2001 1501 1509
, , , , , ,[45] Tank-treading and tumbling frequencies of capsules and red blood cells Phys. Rev. E 2011 046305
, ,Cité par Sources :