Chimeras on a social-type network
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 15.

Voir la notice de l'article provenant de la source EDP Sciences

We consider a social-type network of coupled phase oscillators. Such a network consists of an active core of mutually interacting elements, and of a flock of passive units, which follow the driving from the active elements, but otherwise are not interacting. We consider a ring geometry with a long-range coupling, where active oscillators form a fluctuating chimera pattern. We show that the passive elements are strongly correlated. This is explained by negative transversal Lyapunov exponents.
DOI : 10.1051/mmnp/2021012

Arkady Pikovsky 1, 2

1 Department of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
2 Department of Control Theory, Lobachevsky University of Nizhny Novgorod, Gagarin Avenue 23, 603950 Nizhny Novgorod, Russia.
@article{MMNP_2021_16_a2,
     author = {Arkady Pikovsky},
     title = {Chimeras on a social-type network},
     journal = {Mathematical modelling of natural phenomena},
     eid = {15},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021012/}
}
TY  - JOUR
AU  - Arkady Pikovsky
TI  - Chimeras on a social-type network
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021012/
DO  - 10.1051/mmnp/2021012
LA  - en
ID  - MMNP_2021_16_a2
ER  - 
%0 Journal Article
%A Arkady Pikovsky
%T Chimeras on a social-type network
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021012/
%R 10.1051/mmnp/2021012
%G en
%F MMNP_2021_16_a2
Arkady Pikovsky. Chimeras on a social-type network. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 15. doi : 10.1051/mmnp/2021012. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021012/

[1] D.M. Abrams, S.H. Strogatz Chimera states for coupled oscillators Phys. Rev. Lett 2004 174102

[2] M. Bolotov, L. Smirnov, G. Osipov, A. Pikovsky Simple and complex chimera states in a nonlinearly coupled oscillatory medium Chaos 2018 045101

[3] G. Bordyugov, A. Pikovsky, M. Rosenblum Self-emerging and turbulent chimeras in oscillator chains Phys. Rev. E 2010 035205

[4] G.L. Eyink, K.R. Sreenivasan Onsager and the theory of hydrodynamic turbulence Rev. Mod. Phys 2006 87 135

[5] J. Gerson, A.C. Plagnol, P.J. Corr Passive and Active Facebook Use Measure (PAUM): Validation and relationship to the Reinforcement Sensitivity Theory Person. Individ. Differ 2017 81 90

[6] R.J. Goldschmidt, A. Pikovsky, A. Politi Blinking chimeras in globally coupled rotators Chaos 2019 071101

[7] Y. Kuramoto, D. Battogtokh Coexistence of coherence and incoherence in nonlocally coupled phase oscillators Nonlinear Phenom. Complex Syst 2002 380 385

[8] C.R. Laing The dynamics of chimera states in heterogeneous Kuramoto networks Physica D 2009 1569 1588

[9] Y. Maistrenko, O. Sudakov, O. Osiv, V. Maistrenko Chimera states in three dimensions N. J. Phys 2015 073037

[10] Y.L. Maistrenko, A. Vasylenko, O. Sudakov, R. Levchenko, V.L. Maistrenko Cascades of multiheaded chimera states for coupled phase oscillators Int. J. Bifurc. Chaos 2014 1440014

[11] O.E. Omel’Chenko Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators Nonlinearity 2013 2469

[12] O.E. Omel’Chenko, E. Knobloch Chimerapedia: coherence–incoherence patterns in one, two and three dimensions N. J. Phys 2019 093034

[13] M.J. Panaggio, D.M. Abrams Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators Nonlinearity 2015 R67 R87

[14] F. Peter, C.C. Gong, A. Pikovsky Microscopic correlations in the finite-size Kuramoto model of coupled oscillators Phys. Rev. E 2019 032210

[15] A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001).

[16] L. Schmidt, K. Krischer Clustering as a prerequisite for chimera states in globally coupled systems Phys. Rev. Lett 2015 034101

[17] L. Schmidt, K. Schönleber, K. Krischer, V. Garc’Ia-Morales Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling Chaos 2014

[18] L. Smirnov, G. Osipov, A. Pikovsky Chimera patterns in the Kuramoto-Battogtokh model J. Phys. A: Math. Theor 2017 08LT01

[19] B.M. Trifiro, J. Gerson Social media usage patterns: Research note regarding the lack of universal validated measures for active and passive use SocialMedia + Society 2019 1 4

[20] M. Wolfrum, O.E. Omel’Chenko Chimera states are chaotic transients Phys. Rev. E 2011 015201

[21] J. Xie, E. Knobloch, H.-C. Kao Multicluster and traveling chimera states in nonlocal phase-coupled oscillators Phys. Rev. E 2014 022919

[22] A. Yeldesbay, A. Pikovsky, M. Rosenblum Chimeralike states in an ensemble of globally coupled oscillators Phys. Rev. Lett 2014 144103

[23] M. Zaks, A. Pikovsky Chimeras and complex cluster states in arrays of spin-torque oscillators Sci. Rep 2017 4648

Cité par Sources :