Memory effects on the proliferative function in the cycle-specific of chemotherapy
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 14.

Voir la notice de l'article provenant de la source EDP Sciences

A generalized mathematical model of the breast and ovarian cancer is developed by considering the fractional differential equations with Caputo time-fractional derivatives. The use of the fractional model shows that the time-evolution of the proliferating cell mass, the quiescent cell mass, and the proliferative function are significantly influenced by their history. Even if the classical model, based on the derivative of integer order has been studied in many papers, its analytical solutions are presented in order to make the comparison between the classical model and the fractional model. Using the finite difference method, numerical schemes to the Caputo derivative operator and Riemann-Liouville fractional integral operator are obtained. Numerical solutions to the fractional differential equations of the generalized mathematical model are determined for the chemotherapy scheme based on the function of “on-off” type. Numerical results, obtained with the Mathcad software, are discussed and presented in graphical illustrations. The presence of the fractional order of the time-derivative as a parameter of solutions gives important information regarding the proliferative function, therefore, could give the possible rules for more efficient chemotherapy.
DOI : 10.1051/mmnp/2021009

Najma Ahmed 1 ; Dumitru Vieru 2 ; F.D. Zaman 1

1 Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan.
2 Department of Theoretical Mechanics, Technical University “Gheorghe Asachi” of Iasi, Romania.
@article{MMNP_2021_16_a23,
     author = {Najma Ahmed and Dumitru Vieru and F.D. Zaman},
     title = {Memory effects on the proliferative function in the cycle-specific of chemotherapy},
     journal = {Mathematical modelling of natural phenomena},
     eid = {14},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021009/}
}
TY  - JOUR
AU  - Najma Ahmed
AU  - Dumitru Vieru
AU  - F.D. Zaman
TI  - Memory effects on the proliferative function in the cycle-specific of chemotherapy
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021009/
DO  - 10.1051/mmnp/2021009
LA  - en
ID  - MMNP_2021_16_a23
ER  - 
%0 Journal Article
%A Najma Ahmed
%A Dumitru Vieru
%A F.D. Zaman
%T Memory effects on the proliferative function in the cycle-specific of chemotherapy
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021009/
%R 10.1051/mmnp/2021009
%G en
%F MMNP_2021_16_a23
Najma Ahmed; Dumitru Vieru; F.D. Zaman. Memory effects on the proliferative function in the cycle-specific of chemotherapy. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 14. doi : 10.1051/mmnp/2021009. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021009/

[1] J. Adam, J.C. Panetta A simple mathematical model and alternative paradigm for certain chemotherapeutic regimens Mats. Comput. Model 1995 49 60

[2] E. Ahmed, A.H. Hashis, F.A. Rihan On fractional order cancer model J. fract. Calc. Appl 2012 1 6

[3] I.A. Baba A fractional-order bladder cancermodel with BCG treatment effect Comput. Appl. Math 2019 37

[4] D. Baleanu, A. Jajarmi, S.S. Sajjadi, D. Mozyrska A new fractional model and optimal control of a tumor-immune surveillance with nonsingular derivative operator Chaos 2019 083127

[5] D. Baleanu, Z.B. Güvenç and J.T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications. Springer (2010).

[6] M. Cai, C. Li Numerical approaches to fractional integrals and derivatives: a review Mathematics 2020 43

[7] M. Caputo, Elasticita e Dissipazione, Zanichelli, CityplaceBologna (1965).

[8] O. Defterli Modeling the impact of temperature on fractional order dengue model with vertical transmission Int. J. Optim. Control: Theories Appl 2020 85 93

[9] K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo type, Lecture Notes in Mathematics nr. 2004, Springer, Heidelbereg (2010).

[10] D. Dingli, M.D. Cascino, K. Josic, S.J. Russell, Z. Bajzer Mathematical modeling of cancer radiovirotherapy Math Biosci 2006 55 78

[11] G. Ertas Fitting intravoxel incoherent motion model to diffusion MR signals of the human breast tissue using particle swarm optimization Int. J. Optim. Control: Theories Appl 2019 105 112

[12] F. Evirgen, S. Ucar, N. Ozdemir Analysis of HIV infection model with CD4+Tunder non-singular kernel derivative Appl. Math. Nonlinear Sci 2020 139 146

[13] R. Garrappa, E. Kaslik, M. Popolizio Evaluation of fractional integrals and derivatives of elementary functions: overview and tutorial Mathematics 2019 407

[14] A. Giusti, I. Colombaro Prabhakar-like fractional viscoelasticity Commun. Nonlinear Sci. Numer. Simulat 2018 138 143

[15] R. Hilfer, Y. Luchko Desiderata for fractional derivatives and integrals Mathematics 2019 149

[16] J. Hristov Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels. Pragmatic approach, memory kernel correspondence requirement and analyses Eur. Phys. J. Plus 2019 283

[17] O.G. Isaeva, V.A. Osipov Different strategies for cancer treatment: mathematical modeling Comput. Math. Methods Med 2009 453 72

[18] O.S. Iyiola, F.D. Zaman A fractional diffusion equation model for cancer tumor AIP Adv 2014 107121

[19] Z. Ji, K. Yan, W. Li, H. Hu, X. Zhu Mathematical and computational modeling in complex biological systems BioMed Res. Int 2017 5958321

[20] M.A. Khan, M. Parvez, S. Islam, I. Khan, S. Shafie, T. Gul Mathematical analysis of typhoid model with saturated incidencerate Adv. Stud. Biol 2015 65 78

[21] I. Koka Analysis of rubella disease model with non-local and non-singular fractional derivatives Int. J. Optim. Control: Theories Appl 2018 17 25

[22] A. Kremling, Systems Biology: Mathematical Modeling and Model Analysis. Mathematical and Computational Biology Series. Chapman Hall/CRC Boca Raton, USA (2014).

[23] H. Li, J. Cao, C. Li High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III) J. Comput. Appl. Math 2016 159 175

[24] W. Liu, T. Hillen, H.I. Freedman A mathematical model for M-phase specific chemotherapy including the G0-phase and immunoresponse Math. Biosci. Eng 2007 239 259

[25] Z. Liu, C. Yang A mathematical model of cancer treatment by radiotherapy Comput. Math. Methods Med 2014 172923

[26] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press (2010).

[27] J. Manimaran, L. Shangerganesh, A. Debbouche, V. Antonov Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion Front Phys 2019 93

[28] P.A. Naik, K.M. Owolabi, M. Yavuz, J. Zu Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells Chaos Solitons Fract 2020 110272

[29] N. Özdemir, S. Uçar, B.B.I. Eroglu Dynamical analysis of fractional order model for computer virus propagation with kill signals IJNSNS 2020 239 247

[30] J.C. Panetta, J. Adam A mathematical model of cycle-specific chemotherapy Math. Comput. Model 1995 67 82

[31] J.C. Panetta A mathematical model of breast and ovarian cancer treated with Paclitaxel Math. Biosci 1997 89 113

[32] J.E. Solis-Perez, J.F. Gomez-Aguilar, A. Atangana A fractional mathematical model of breast cancer competition model Chaos Solitons Fract 2019 38 54

[33] V.E. Tarasov, G.M. Zaslavsky Fractional dynamics of systems with long-range interaction Commun. Nonlinear Sci. Numer. Simulat 2006 885 898

[34] J.A. Tuszynski, P. Winter, D. White, C.Y. Tseng, K.K. Sahu, F. Gentile, I. Spasevska, S.I. Omar, N. Nayebi, C.D.M. Churchill, M. Klobukowski, R.M. Abou El-Magd Mathematical and computational modeling in biology at multiple scales Theor. Biol. Med. Model 2014 52

[35] E. Ucar, N.Ozdemir, E. Altun Fractional order model of immune cells influenced by cancer cells MMNP 2019 308

[36] S. Ucar, E. Ucar, N. Ozdemir, Z. Hammouch Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative Chaos Solitons Fractals 2019 300 308

[37] P. Unni, P. Seshaiyer Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions Comput. Math. Methods Med 2019 4079298

[38] J.R. Usher Some mathematical models for cancer chemotherapy Comput. Math. Appl 1994 73 80

[39] S. Wang, H. Schattler Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity Math. BioSciences 2016 1223 1240

[40] G.F. Webb, A nonlinear cell population model of periodic chemotherapy treatment. Vol. I of Recent Trends in Ordinary Differential Equations. Series in Applicable Analysis. World Scientific (1992) 569–583.

[41] H.N. Weerasinghe, P.M. Burrage, K. Burrage, D.V. Nicolau Mathematical models of cancer cell plasticity J. Oncol 2019 2403483

[42] M. Yavuz, N. Ozdemir Analysis of an epidemic spreading model with exponential decay law Math. Sci. Appl. E-Notes 2020 142 154

[43] M. Yavuz, N. Sene Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate Fractal Fract 2020 35

[44] A. Yin, D.J.A.R. Moes, J.G.C. Van Hasselt, J.J. Swen, H.J. Guchelaar A review of mathematical models for tumor dynamicsand treatment resistance evolution of solid tumors CPT Pharmacometrics Syst. Pharmacol 2019 720 737

Cité par Sources :