Voir la notice de l'article provenant de la source EDP Sciences
Najma Ahmed 1 ; Dumitru Vieru 2 ; F.D. Zaman 1
@article{MMNP_2021_16_a23, author = {Najma Ahmed and Dumitru Vieru and F.D. Zaman}, title = {Memory effects on the proliferative function in the cycle-specific of chemotherapy}, journal = {Mathematical modelling of natural phenomena}, eid = {14}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021009}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021009/} }
TY - JOUR AU - Najma Ahmed AU - Dumitru Vieru AU - F.D. Zaman TI - Memory effects on the proliferative function in the cycle-specific of chemotherapy JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021009/ DO - 10.1051/mmnp/2021009 LA - en ID - MMNP_2021_16_a23 ER -
%0 Journal Article %A Najma Ahmed %A Dumitru Vieru %A F.D. Zaman %T Memory effects on the proliferative function in the cycle-specific of chemotherapy %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021009/ %R 10.1051/mmnp/2021009 %G en %F MMNP_2021_16_a23
Najma Ahmed; Dumitru Vieru; F.D. Zaman. Memory effects on the proliferative function in the cycle-specific of chemotherapy. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 14. doi : 10.1051/mmnp/2021009. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021009/
[1] A simple mathematical model and alternative paradigm for certain chemotherapeutic regimens Mats. Comput. Model 1995 49 60
,[2] On fractional order cancer model J. fract. Calc. Appl 2012 1 6
, ,[3] A fractional-order bladder cancermodel with BCG treatment effect Comput. Appl. Math 2019 37
[4] A new fractional model and optimal control of a tumor-immune surveillance with nonsingular derivative operator Chaos 2019 083127
, , ,[5] D. Baleanu, Z.B. Güvenç and J.T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications. Springer (2010).
[6] Numerical approaches to fractional integrals and derivatives: a review Mathematics 2020 43
,[7] M. Caputo, Elasticita e Dissipazione, Zanichelli, CityplaceBologna (1965).
[8] Modeling the impact of temperature on fractional order dengue model with vertical transmission Int. J. Optim. Control: Theories Appl 2020 85 93
[9] K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo type, Lecture Notes in Mathematics nr. 2004, Springer, Heidelbereg (2010).
[10] Mathematical modeling of cancer radiovirotherapy Math Biosci 2006 55 78
, , , ,[11] Fitting intravoxel incoherent motion model to diffusion MR signals of the human breast tissue using particle swarm optimization Int. J. Optim. Control: Theories Appl 2019 105 112
[12] Analysis of HIV infection model with CD4+Tunder non-singular kernel derivative Appl. Math. Nonlinear Sci 2020 139 146
, ,[13] Evaluation of fractional integrals and derivatives of elementary functions: overview and tutorial Mathematics 2019 407
, ,[14] Prabhakar-like fractional viscoelasticity Commun. Nonlinear Sci. Numer. Simulat 2018 138 143
,[15] Desiderata for fractional derivatives and integrals Mathematics 2019 149
,[16] Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels. Pragmatic approach, memory kernel correspondence requirement and analyses Eur. Phys. J. Plus 2019 283
[17] Different strategies for cancer treatment: mathematical modeling Comput. Math. Methods Med 2009 453 72
,[18] A fractional diffusion equation model for cancer tumor AIP Adv 2014 107121
,[19] Mathematical and computational modeling in complex biological systems BioMed Res. Int 2017 5958321
, , , ,[20] Mathematical analysis of typhoid model with saturated incidencerate Adv. Stud. Biol 2015 65 78
, , , , ,[21] Analysis of rubella disease model with non-local and non-singular fractional derivatives Int. J. Optim. Control: Theories Appl 2018 17 25
[22] A. Kremling, Systems Biology: Mathematical Modeling and Model Analysis. Mathematical and Computational Biology Series. Chapman Hall/CRC Boca Raton, USA (2014).
[23] High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III) J. Comput. Appl. Math 2016 159 175
, ,[24] A mathematical model for M-phase specific chemotherapy including the G0-phase and immunoresponse Math. Biosci. Eng 2007 239 259
, ,[25] A mathematical model of cancer treatment by radiotherapy Comput. Math. Methods Med 2014 172923
,[26] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press (2010).
[27] Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion Front Phys 2019 93
, , ,[28] Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells Chaos Solitons Fract 2020 110272
, , ,[29] Dynamical analysis of fractional order model for computer virus propagation with kill signals IJNSNS 2020 239 247
, ,[30] A mathematical model of cycle-specific chemotherapy Math. Comput. Model 1995 67 82
,[31] A mathematical model of breast and ovarian cancer treated with Paclitaxel Math. Biosci 1997 89 113
[32] A fractional mathematical model of breast cancer competition model Chaos Solitons Fract 2019 38 54
, ,[33] Fractional dynamics of systems with long-range interaction Commun. Nonlinear Sci. Numer. Simulat 2006 885 898
,[34] Mathematical and computational modeling in biology at multiple scales Theor. Biol. Med. Model 2014 52
, , , , , , , , , , ,[35] Fractional order model of immune cells influenced by cancer cells MMNP 2019 308
, ,[36] Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative Chaos Solitons Fractals 2019 300 308
, , ,[37] Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions Comput. Math. Methods Med 2019 4079298
,[38] Some mathematical models for cancer chemotherapy Comput. Math. Appl 1994 73 80
[39] Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity Math. BioSciences 2016 1223 1240
,[40] G.F. Webb, A nonlinear cell population model of periodic chemotherapy treatment. Vol. I of Recent Trends in Ordinary Differential Equations. Series in Applicable Analysis. World Scientific (1992) 569–583.
[41] Mathematical models of cancer cell plasticity J. Oncol 2019 2403483
, , ,[42] Analysis of an epidemic spreading model with exponential decay law Math. Sci. Appl. E-Notes 2020 142 154
,[43] Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate Fractal Fract 2020 35
,[44] A review of mathematical models for tumor dynamicsand treatment resistance evolution of solid tumors CPT Pharmacometrics Syst. Pharmacol 2019 720 737
, , , ,Cité par Sources :