Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 12.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we consider a two-term time-fractional diffusion-wave equation which involves the fractional orders α ∈ (1, 2) and β ∈ (0, 1), respectively. By using piecewise linear Galerkin finite element method in space and convolution quadrature based on second-order backward difference method in time, we obtain a robust fully discrete scheme. Error estimates for semidiscrete and fully discrete schemes are established with respect to nonsmooth data. Numerical experiments for two-dimensional problems are provided to illustrate the efficiency of the method and conform the theoretical results.
DOI : 10.1051/mmnp/2021007

Lijuan Nong 1 ; An Chen 1 ; Jianxiong Cao 2

1 College of Science, Guilin University of Technology, Guilin, Guangxi 541004, P.R. China.
2 School of Sciences, Lanzhou University of Technology, Lanzhou, Gansu 730050, P.R. China.
@article{MMNP_2021_16_a14,
     author = {Lijuan Nong and An Chen and Jianxiong Cao},
     title = {Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data},
     journal = {Mathematical modelling of natural phenomena},
     eid = {12},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021007},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021007/}
}
TY  - JOUR
AU  - Lijuan Nong
AU  - An Chen
AU  - Jianxiong Cao
TI  - Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021007/
DO  - 10.1051/mmnp/2021007
LA  - en
ID  - MMNP_2021_16_a14
ER  - 
%0 Journal Article
%A Lijuan Nong
%A An Chen
%A Jianxiong Cao
%T Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021007/
%R 10.1051/mmnp/2021007
%G en
%F MMNP_2021_16_a14
Lijuan Nong; An Chen; Jianxiong Cao. Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 12. doi : 10.1051/mmnp/2021007. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021007/

[1] M. Al-Maskari, S. Karaa Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data SIAM J. Numer. Anal 2019 1524 1544

[2] E. Bazhlekova, B. Jin, R. Lazarov, Z. Zhou An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid Numer. Math 2015 1 31

[3] A. Chen, C. Li An alternating direction Galerkin method for a time-fractional partial differential equation with damping in two space dimensions Adv. Differ. Equ 2017

[4] E. Cuesta, C. Lubich, C. Palencia Convolution quadrature time discretization of fractional diffusion-wave equations Math. Comput 2006 673 696

[5] W. Fan, X. Jiang, F. Liu, V. Anh The unstructured mesh finite element method for the two-dimensional multi-term time–space fractional diffusion-wave equation on an irregular convex domain J. Sci. Comput 2018 27 52

[6] L. Feng, F. Liu, I. Turner, L. Zheng Novel numerical analysis of multi-term time fractional viscoelastic non-newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid Fract. Calc. Appl. Anal 2018 1073 1103

[7] L. Feng, I. Turner, P. Perré, K. Burrage An investigation of nonlinear time-fractional anomalous diffusion models for simulating transport processes in heterogeneous binary media Commun. Nonlinear Sci. Numer. Simul 2020 105454

[8] M. Ferreira, M.M. Rodrigues, N. Vieira Fundamental solution of the multi-dimensional time fractional telegraph equation Fract. Calc. Appl. Anal 2017 868 894

[9] C. Fetecau, M. Athar, C. Fetecau Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate Comput. Math. Appl 2009 596 603

[10] W. Gao, P. Veeresha, H.M. Baskonus, D.G. Prakasha, P. Kumar A new study of unreported cases of 2019-nCOV epidemic outbreaks Chaos Solitons Fractals 2020 109929

[11] W. Gao, P. Veeresha, D.G. Prakasha, H.M. Baskonus, G. Yel New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function Chaos Solitons Fractals 2020 109696

[12] R. Gorenflo, Y. Luchko, M. Stojanović Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density Fract. Calc. Appl. Anal 2013 297 316

[13] B. Jin, R. Lazarov, Z. Zhou Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data SIAM J. Sci. Comput 2016 A146 A170

[14] B. Jin, B. Li, Z. Zhou Correction of high-order BDF convolution quadrature for fractional evolution equations SIAM J. Sci. Comput 2017 A3129 A3152

[15] M. Khan, K. Maqbool, T. Hayat Influence of Hall current on the flows of a generalized Oldroyd-B fluid in a porous space Acta Mech 2006 1 13

[16] C. Li, A. Chen Numerical methods for fractional partial differential equations Int. J. Comput. Methods Eng. Sci. Mech 2018 1048 1099

[17] C. Li and F. Zeng, Numerical methods for fractional calculus. Chapman and Hall/CRC, Boca Raton (2015).

[18] H. Liu, S. Lü Gauss-Lobatto-Legendre-Birkhoff pseudospectral approximations for the multi-term time fractional diffusion-wave equation with Neumann boundary conditions Numer. Methods Partial Differ. Equ 2018 2217 2236

[19] Z. Liu, F. Liu, F. Zeng An alternating direction implicit spectral method for solving two dimensional multi-term time fractionalmixed diffusion and diffusion-wave equations Appl. Numer. Math 2019 139 151

[20] C. Lubich Convolution quadrature and discretized operational calculus I. BIT Numer. Math. 1988 129 145

[21] R. Metzler, J. Klafter The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep 2000 1 77

[22] E. Orsingher, L. Beghin Time-fractional telegraph equations and telegraph processes with Brownian time Probab. Theory Relat. Fields 2004 141 160

[23] R. Schumer, D.A. Benson, M.M. Meerschaert, B. Baeumer Fractal mobile/immobile solute transport Water Resour. Res 2003 1296

[24] B. Shiri, D. Baleanu System of fractional differential algebraic equations with applications Chaos Solitons Fractals 2019 203 212

[25] M. Stojanović, R. Gorenflo Nonlinear two-term time fractional diffusion-wave problem Nonlinear Anal.: Real World Appl 2010 3512 3523

[26] H. Sun, X. Zhao, Z. Sun The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation J. Sci. Comput 2018 467 498

[27] V. Thomée, Galerkin finite element methods for parabolic problems, second edn. Springer, Berlin (2006).

[28] K. Wang, Z. Zhou High-order time stepping schemes for semilinear subdiffusion equations SIAM J. Numer. Anal 2020 3226 3250

[29] F. Zeng, Z. Zhang, G.E. Karniadakis Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions Comput. Methods Appl. Mech. Eng 2017 478 502

[30] M. Zheng, F. Liu, V. Anh, I. Turner A high-order spectral method for the multi-term time-fractional diffusion equations Appl. Math. Model 2016 4970 4985

Cité par Sources :