Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2021_16_a14, author = {Lijuan Nong and An Chen and Jianxiong Cao}, title = {Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data}, journal = {Mathematical modelling of natural phenomena}, eid = {12}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021007}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021007/} }
TY - JOUR AU - Lijuan Nong AU - An Chen AU - Jianxiong Cao TI - Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021007/ DO - 10.1051/mmnp/2021007 LA - en ID - MMNP_2021_16_a14 ER -
%0 Journal Article %A Lijuan Nong %A An Chen %A Jianxiong Cao %T Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021007/ %R 10.1051/mmnp/2021007 %G en %F MMNP_2021_16_a14
Lijuan Nong; An Chen; Jianxiong Cao. Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 12. doi : 10.1051/mmnp/2021007. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021007/
[1] Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data SIAM J. Numer. Anal 2019 1524 1544
,[2] An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid Numer. Math 2015 1 31
, , ,[3] An alternating direction Galerkin method for a time-fractional partial differential equation with damping in two space dimensions Adv. Differ. Equ 2017
,[4] Convolution quadrature time discretization of fractional diffusion-wave equations Math. Comput 2006 673 696
, ,[5] The unstructured mesh finite element method for the two-dimensional multi-term time–space fractional diffusion-wave equation on an irregular convex domain J. Sci. Comput 2018 27 52
, , ,[6] Novel numerical analysis of multi-term time fractional viscoelastic non-newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid Fract. Calc. Appl. Anal 2018 1073 1103
, , ,[7] An investigation of nonlinear time-fractional anomalous diffusion models for simulating transport processes in heterogeneous binary media Commun. Nonlinear Sci. Numer. Simul 2020 105454
, , ,[8] Fundamental solution of the multi-dimensional time fractional telegraph equation Fract. Calc. Appl. Anal 2017 868 894
, ,[9] Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate Comput. Math. Appl 2009 596 603
, ,[10] A new study of unreported cases of 2019-nCOV epidemic outbreaks Chaos Solitons Fractals 2020 109929
, , , ,[11] New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function Chaos Solitons Fractals 2020 109696
, , , ,[12] Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density Fract. Calc. Appl. Anal 2013 297 316
, ,[13] Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data SIAM J. Sci. Comput 2016 A146 A170
, ,[14] Correction of high-order BDF convolution quadrature for fractional evolution equations SIAM J. Sci. Comput 2017 A3129 A3152
, ,[15] Influence of Hall current on the flows of a generalized Oldroyd-B fluid in a porous space Acta Mech 2006 1 13
, ,[16] Numerical methods for fractional partial differential equations Int. J. Comput. Methods Eng. Sci. Mech 2018 1048 1099
,[17] C. Li and F. Zeng, Numerical methods for fractional calculus. Chapman and Hall/CRC, Boca Raton (2015).
[18] Gauss-Lobatto-Legendre-Birkhoff pseudospectral approximations for the multi-term time fractional diffusion-wave equation with Neumann boundary conditions Numer. Methods Partial Differ. Equ 2018 2217 2236
,[19] An alternating direction implicit spectral method for solving two dimensional multi-term time fractionalmixed diffusion and diffusion-wave equations Appl. Numer. Math 2019 139 151
, ,[20] Convolution quadrature and discretized operational calculus I. BIT Numer. Math. 1988 129 145
[21] The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep 2000 1 77
,[22] Time-fractional telegraph equations and telegraph processes with Brownian time Probab. Theory Relat. Fields 2004 141 160
,[23] Fractal mobile/immobile solute transport Water Resour. Res 2003 1296
, , ,[24] System of fractional differential algebraic equations with applications Chaos Solitons Fractals 2019 203 212
,[25] Nonlinear two-term time fractional diffusion-wave problem Nonlinear Anal.: Real World Appl 2010 3512 3523
,[26] The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation J. Sci. Comput 2018 467 498
, ,[27] V. Thomée, Galerkin finite element methods for parabolic problems, second edn. Springer, Berlin (2006).
[28] High-order time stepping schemes for semilinear subdiffusion equations SIAM J. Numer. Anal 2020 3226 3250
,[29] Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions Comput. Methods Appl. Mech. Eng 2017 478 502
, ,[30] A high-order spectral method for the multi-term time-fractional diffusion equations Appl. Math. Model 2016 4970 4985
, , ,Cité par Sources :