Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2021_16_a26, author = {Hui Cao and Dongxue Yan and Xiaxia Xu}, title = {Hopf bifurcation for an {SIR} model with age structure}, journal = {Mathematical modelling of natural phenomena}, eid = {7}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021003}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021003/} }
TY - JOUR AU - Hui Cao AU - Dongxue Yan AU - Xiaxia Xu TI - Hopf bifurcation for an SIR model with age structure JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021003/ DO - 10.1051/mmnp/2021003 LA - en ID - MMNP_2021_16_a26 ER -
%0 Journal Article %A Hui Cao %A Dongxue Yan %A Xiaxia Xu %T Hopf bifurcation for an SIR model with age structure %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021003/ %R 10.1051/mmnp/2021003 %G en %F MMNP_2021_16_a26
Hui Cao; Dongxue Yan; Xiaxia Xu. Hopf bifurcation for an SIR model with age structure. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 7. doi : 10.1051/mmnp/2021003. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2021003/
[1] R.M. Anderson and R.M. May, Infectious Disease of Humans, Dynamics and Control. Oxford University Press, Oxford (1991).
[2] Geometric stability switch criteria in delay differential systems with delay dependent parameters SIAM J Math Anal 2002 1144 1165
,[3] A model for an SI disease in an age-structured population Discrete Contin. Dyn. Syst. Ser. B 2002 257 264
[4] The impact of media on the control of infectious diseases J. Dyn. Differ. Equ 2008 31 53
, ,[5] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000).
[6] J.K. Hale, Theory of Function Differential Equations. Springer, Heidelberg (1977).
[7] M. Iannalli, Mathematical theory of age-structured population dynamics. Vol. 7 of Applied Mathematics Monographs. Giardini, Pisa (1995).
[8] Progression age enhanced backward bifurcation in an epidemic model with super-infection J. Math. Biol 2003 385 424
,[9] A two-strain tuberculosis model with age of infection SIAM J. Appl. Math 2002 1634 1656
, ,[10] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983).
[11] On the zeros of transcendental functions with applications to stability of delay differential equations with two delays Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal 2003 863 874
,[12] Convergence results and a Poincaré–Bendixson trichotomy for asymptotically autonomous differential equations J. Math. Biol 1992 755 763
[13] Media alert in an SIS epidemic model with logistic growth J. Biol. Dyn 2017 120 137
, , , ,[14] Y. Zhou, B. Song and Z. Ma, The global stability analysis for a SIS model with age and infection age structures, in Vol. 126 of Mathematical Approaches for Emerging and Reemerging Infectious Disease, edited by C. Castillo-Chavez, S. Blower. The IMA Volumes in Mathematics and its Applications. Springer-Verlag (2001) 313–335.
Cité par Sources :