Spatiotemporal dynamics of a fractional model for hepatitis B virus infection with cellular immunity
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 5.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we propose and investigate a fractional diffusive model for hepatitis B virus (HBV) infection with capsids and immune response presented by cytotoxic T lymphocyte (CTL) cells. We derive the conditions for global asymptotic stability of the steady states of the model in terms of the basic reproduction number R0 and the immune response reproduction number R1. By constructing appropriate Lyapunov functionals, it is shown that the infection-free equilibrium is globally asymptotically stable when R0 ≤ 1, the immune-free infection equilibrium is globally asymptotically stable when R1 ≤ 1 R0 and the infection equilibrium with CTL immune response is globally asymptotically stable when R1 > 1. Numerical simulations are performed to illustrate the analytical results.
DOI : 10.1051/mmnp/2020058

Moussa Bachraoui 1 ; Mohamed Ait Ichou 2 ; Khalid Hattaf 1, 3 ; Noura Yousfi 1

1 Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, P.O Box 7955 Sidi Othman, Casablanca, Morocco.
2 Laboratory of Mathematics and Applications (LMA), École Normale Supérieure, Hassan II University of Casablanca, Casablanca, Morocco.
3 Centre Régional des Métiers de l’Education et de la Formation (CRMEF), 20340 Derb Ghalef, Casablanca, Morocco.
@article{MMNP_2021_16_a25,
     author = {Moussa Bachraoui and Mohamed Ait Ichou and Khalid Hattaf and Noura Yousfi},
     title = {Spatiotemporal dynamics of a fractional model for hepatitis {B} virus infection with cellular immunity},
     journal = {Mathematical modelling of natural phenomena},
     eid = {5},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2020058},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020058/}
}
TY  - JOUR
AU  - Moussa Bachraoui
AU  - Mohamed Ait Ichou
AU  - Khalid Hattaf
AU  - Noura Yousfi
TI  - Spatiotemporal dynamics of a fractional model for hepatitis B virus infection with cellular immunity
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020058/
DO  - 10.1051/mmnp/2020058
LA  - en
ID  - MMNP_2021_16_a25
ER  - 
%0 Journal Article
%A Moussa Bachraoui
%A Mohamed Ait Ichou
%A Khalid Hattaf
%A Noura Yousfi
%T Spatiotemporal dynamics of a fractional model for hepatitis B virus infection with cellular immunity
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020058/
%R 10.1051/mmnp/2020058
%G en
%F MMNP_2021_16_a25
Moussa Bachraoui; Mohamed Ait Ichou; Khalid Hattaf; Noura Yousfi. Spatiotemporal dynamics of a fractional model for hepatitis B virus infection with cellular immunity. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 5. doi : 10.1051/mmnp/2020058. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020058/

[1] A. Al-Khedhairi, A.A. Elsadany, A. Elsonbaty Modelling immune systems based on Atangana-Baleanu fractional derivative Chaos Solitons Fract 2019 25 39

[2] M. Bachraoui, K. Hattaf, N. Yousfi Dynamics of a fractional order HBV infection model with capsids and CTL immune response Commun. Math. Biol. Neurosci 2019 1 15

[3] D. Baleanu, A. Jajarmi, S.S. Sajjadi, D. Mozyrska A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator Chaos 2019 083127

[4] J.R. Beddington Mutual interference between parasites or predators and its effect on searching efficiency J. Anim. Ecol 1975 331 340

[5] A. Boukhouima, K. Hattaf and N. Yousfi, Modeling the Memory and Adaptive Immunity in Viral Infection. Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics. Springer, Cham (2019) 271–297.

[6] L.C. Cardoso, F.L.P. Dos Santos, R.F. Camargo Analysis of fractional-order models for hepatitis B Comput. Appl. Math 2018 4570 4586

[7] P.H. Crowley, E.K. Martin Functional responses and interference within and between year classes of a dragonfly population J. North Am. Bentholog. Soc 1989 211 221

[8] C.V. De-Leon Volterra-type Lyapunov functions for fractional-order epidemic systems Commun. Nonlinear Sci. Numer. Simul 2015 75 85

[9] D.L. Deangelis, A.H. Goldstein, R.V. O’Neill A model for trophic interaction Ecology 1975 881 892

[10] Y. Geng, J. Xu, J. Hou Discretization and dynamic consistency of a delayed and diffusive viral infection model Appl. Math. Comput 2018 282 295

[11] K. Hattaf, N. Yousfi A class of delayed viral infection models with general incidence rate and adaptive immune response Int. J. Dynam. Control 2016 254 265

[12] K. Hattaf and N. Yousfi, Global properties of a diffusive HBV infection model with cell-to-cell transmission and three distributed delays. Disease Prevention and Health Promotion in Developing Countries. Springer, Cham (2020) 117–131.

[13] K. Hattaf, N. Yousfi, A. Tridane Stability analysis of a virus dynamics model with general incidence rate and two delays Appl. Math. Comput 2013 514 521

[14] J. Huo, H. Zhao, L. Zhu The effect of vaccines on backward bifurcation in a fractional order HIV model Nonlinear Anal.: Real World Appl 2015 289 305

[15] M. Mahrouf, K. Hattaf, N. Yousfi Dynamics of a Stochastic Viral Infection Model with Immune Response Math. Model. Nat. Phenom 2017 15 32

[16] K. Manna, K. Hattaf Spatiotemporal dynamics of a generalized HBV infection model with capsids and adaptive immunity Int J Appl Comput Math 2019 65

[17] K. Manna, S.P. Chakrabarty Global stability and a non-standard finite difference scheme for a diffusion driven HBV model with capsids J. Differ. Equ. Appl 2015 918 933

[18] K. Manna Dynamics of a delayed diffusive HBV infection model with capsids and CTL immune response Int. J. Appl. Comput. Math 2018 116

[19] K. Manna, S.P. Chakrabarty Chronic hepatitis B infection and HBV DNA-containing capsids: modeling and analysis Commun. Nonlinear Sci. Numer. Simul 2015 383 395

[20] K. Manna Global properties of a HBV infection model with HBV DNA-containing capsids and CTL immune response Int. J. Appl. Comput. Math 2017 2323 2338

[21] J.M. Murray, R.H. Purcell, S.F. Wieland The half-life of hepatitis B virions Hepatology 2006 1117 1121

[22] J.M. Murray, S.F. Wieland, R.H. Purcell, F.V. Chisari Dynamics of hepatitis B virus clearance in chimpanzees Proc. Natl. Acad. Sci. USA 2005 17780 17785

[23] M.A. Nowak, S. Bonhoeffer, A.M. Hill, R. Boehme, H.C. Thomas, H. Mcdade Viral dynamics in hepatitis B virus infection Proc. Natl. Acad. Sci. USA 1996 4398 4402

[24] I. Petrás, Fractional derivatives, fractional integrals, fractional differential equations in matlab. In Engineering Education and Research Using MATLAB. InTech (2011).

[25] D. Riad, K. Hattaf, N. Yousfi Dynamics of capital-labour model with Hattaf-Yousfi functional response J. Adv. Math. Comput. Sci 2016 1 7

[26] S. Samuel, V. Gill Time-fractional diffusion model on dynamical effect of dendritic cells on HIV pathogenesis J. Comput. Methods Sci. Eng 2018 1 20

[27] S.M. Salman, A.M. Yousef On a fractional-order model for HBV infection with cure of infected cells J. Egypt. Math. Soc 2017 445 451

[28] R. Shi, T. Lu, C. Wang Dynamic analysis of a fractional-order model for Hepatitis B Virus with Holling II functional response Complexity 2019 1 13

[29] R. Shi, T. Lu, C. Wang Dynamic analysis of a fractional-order delayed model for hepatitis B virus with CTL immune response Virus Res 2020 197841

[30] K. Wang, W. Wang Propagation of HBV with spatial dependence Math. Biosci 2007 78 95

[31] X. Zhuo, Analysis of a HBV infection model with noncytolytic cure process. IEEE 6th International Conference on Systems Biology (ISB) (2012) 148–151.

[32] X. Zhou, Q. Sun Stability analysis of a fractional-order HBV infection model Int. J. Adv. Appl. Math. Mech 2014 1 6

Cité par Sources :