Multiobjective approach in the treatment of cancer
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 4.

Voir la notice de l'article provenant de la source EDP Sciences

In this work we deal with a cancer problem involving the growth of tumor cells and their interaction with effector cells. The goal is to find an optimal control minimizing tumor cells density together with the amount of chemotherapy drugs and maximizing the density of effector cells. By invoking the multi-objective optimization we characterize optimal Pareto solutions and give simulation of Pareto front.
DOI : 10.1051/mmnp/2020057

Soukaina Sabir 1 ; Nadia Raissi 2 ; Mustapha Serhani 3

1 Faculty of sciences, University of Mohammed V, 4 Avenue Ibn Battouta B.P. 1014 RP, Rabat, Morocco.
2 NAMDS Team, MAA Laboratory, Faculty of sciences, University of Mohammed V, 4 Avenue Ibn Battouta B.P. 1014 RP, Rabat, Morocco.
3 MACS Team, MACS Laboratory, FSJES, University Moulay Ismail, B.P. 3102, Toulal, Meknes, Morocco.
@article{MMNP_2021_16_a22,
     author = {Soukaina Sabir and Nadia Raissi and Mustapha Serhani},
     title = {Multiobjective approach in the treatment of cancer},
     journal = {Mathematical modelling of natural phenomena},
     eid = {4},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2020057},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020057/}
}
TY  - JOUR
AU  - Soukaina Sabir
AU  - Nadia Raissi
AU  - Mustapha Serhani
TI  - Multiobjective approach in the treatment of cancer
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020057/
DO  - 10.1051/mmnp/2020057
LA  - en
ID  - MMNP_2021_16_a22
ER  - 
%0 Journal Article
%A Soukaina Sabir
%A Nadia Raissi
%A Mustapha Serhani
%T Multiobjective approach in the treatment of cancer
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020057/
%R 10.1051/mmnp/2020057
%G en
%F MMNP_2021_16_a22
Soukaina Sabir; Nadia Raissi; Mustapha Serhani. Multiobjective approach in the treatment of cancer. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 4. doi : 10.1051/mmnp/2020057. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020057/

[1] A. Chorobura and H. Zidani, Bi-objective finite horizon optimal control problems with Bolza and maximum running cost. Available at: Hal 01929094 (2018).

[2] L.G. De Pillis, K.R. Fister, W. Gu, T. Head, K. Maples, T. Neal, K. Kozai Optimal control of mixed immunotherapy and chemotherapy of tumors J. Biol. Syst 2008 51 80

[3] L.G. De Pillis, W. Gu, A.E. Radunskaya Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations J. Theor. Biol 2006 841 862

[4] L.G. De Pillis, A.E. Radunskaya, C.L. Wiseman A validated mathematical model of cell-mediated immune response to tumor growth Cancer Res 2005 7950 7958

[5] L.G. De Pillis, W. Gu, K.R. Fister, T. Head, K. Maples, A. Murugan, K. Yoshida Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls Math. Biosci 2007 292 315

[6] J.A. Désidéri and R. Duvigneau, Optimisation Avancée Support de cours de la partie Optimisation Fonctionnelle, Polytech’Nice (2016).

[7] D.S. Dixit, D. Kumar, S. Kumar, R. Johri A mathematical model of chemotherapy for tumor treatment Adv. Appl. Math. Biosci 2012 1 10

[8] M. Ehrgott, Multicriteria Optimization, 2nd ed. Springer, New York, USA (2005).

[9] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control. Springer New York (1975).

[10] A. Hanoteau, C. Henin, M. Moser L’immunothérapie au service de la chimiothérapie, de nouvelles avancées Médecine/Sciences 2016 353 361

[11] A. Kumar, A. Vladimirsky An efficient method for multiobjective optimal control and optimal control subject to integral constraints J. Comput. Math 2010 517 551

[12] V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis Bull. Math. Biol 1994 295 321

[13] H. Kwakernaak, R. Sivan, B.N.D. Tyreus Linear optimal control systems J. Dyn. Syst. Measur. Control 1974 373 374

[14] U. Ledzewicz, H. Schättler Anti-angiogenic therapy in cancer treatment as an optimal control problem SIAM J. Control Optim 2017 1052 79

[15] R.B. Martin, M.E. Fisher, R.F. Minchin, K.L. Teo A mathematical model of cancer chemotherapy with an optimal selection of parameters Math. Biosci 1990 205 230

[16] K. Miettinen, Nonlinear Multiobjective Optimization. Springer, Berlin, Germany (2012).

[17] S. Sabir and N. Raissi, Analysis of tumor/effector cell dynamics and decision support in therapy. In Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics (2019) 153–164.

[18] S. Sabir, N. Raissi, M. Serhani Chemotherapy and immunotherapy for tumors: a study of quadratic optimal control Int. J. Appl. Comput. Math. 2020 81

[19] H.M. Schattler and U. Ledzewicz, Optimal control for mathematical models of cancer therapies. Vol. 42 of Interdisciplinary Applied Mathematics. Springer, New York (2015).

[20] M. Serhani, H. Essaadi, K. Kassara, A. Boutoulout Control by viability in a chemotherapy cancer model Acta Biotheor 2019 177 200

Cité par Sources :