Voir la notice de l'article provenant de la source EDP Sciences
Soukaina Sabir 1 ; Nadia Raissi 2 ; Mustapha Serhani 3
@article{MMNP_2021_16_a22, author = {Soukaina Sabir and Nadia Raissi and Mustapha Serhani}, title = {Multiobjective approach in the treatment of cancer}, journal = {Mathematical modelling of natural phenomena}, eid = {4}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2020057}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020057/} }
TY - JOUR AU - Soukaina Sabir AU - Nadia Raissi AU - Mustapha Serhani TI - Multiobjective approach in the treatment of cancer JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020057/ DO - 10.1051/mmnp/2020057 LA - en ID - MMNP_2021_16_a22 ER -
%0 Journal Article %A Soukaina Sabir %A Nadia Raissi %A Mustapha Serhani %T Multiobjective approach in the treatment of cancer %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020057/ %R 10.1051/mmnp/2020057 %G en %F MMNP_2021_16_a22
Soukaina Sabir; Nadia Raissi; Mustapha Serhani. Multiobjective approach in the treatment of cancer. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 4. doi : 10.1051/mmnp/2020057. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020057/
[1] A. Chorobura and H. Zidani, Bi-objective finite horizon optimal control problems with Bolza and maximum running cost. Available at: Hal 01929094 (2018).
[2] Optimal control of mixed immunotherapy and chemotherapy of tumors J. Biol. Syst 2008 51 80
, , , , , ,[3] Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations J. Theor. Biol 2006 841 862
, ,[4] A validated mathematical model of cell-mediated immune response to tumor growth Cancer Res 2005 7950 7958
, ,[5] Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls Math. Biosci 2007 292 315
, , , , , ,[6] J.A. Désidéri and R. Duvigneau, Optimisation Avancée Support de cours de la partie Optimisation Fonctionnelle, Polytech’Nice (2016).
[7] A mathematical model of chemotherapy for tumor treatment Adv. Appl. Math. Biosci 2012 1 10
, , ,[8] M. Ehrgott, Multicriteria Optimization, 2nd ed. Springer, New York, USA (2005).
[9] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control. Springer New York (1975).
[10] L’immunothérapie au service de la chimiothérapie, de nouvelles avancées Médecine/Sciences 2016 353 361
, ,[11] An efficient method for multiobjective optimal control and optimal control subject to integral constraints J. Comput. Math 2010 517 551
,[12] Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis Bull. Math. Biol 1994 295 321
, , ,[13] Linear optimal control systems J. Dyn. Syst. Measur. Control 1974 373 374
, ,[14] Anti-angiogenic therapy in cancer treatment as an optimal control problem SIAM J. Control Optim 2017 1052 79
,[15] A mathematical model of cancer chemotherapy with an optimal selection of parameters Math. Biosci 1990 205 230
, , ,[16] K. Miettinen, Nonlinear Multiobjective Optimization. Springer, Berlin, Germany (2012).
[17] S. Sabir and N. Raissi, Analysis of tumor/effector cell dynamics and decision support in therapy. In Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics (2019) 153–164.
[18] Chemotherapy and immunotherapy for tumors: a study of quadratic optimal control Int. J. Appl. Comput. Math. 2020 81
, ,[19] H.M. Schattler and U. Ledzewicz, Optimal control for mathematical models of cancer therapies. Vol. 42 of Interdisciplinary Applied Mathematics. Springer, New York (2015).
[20] Control by viability in a chemotherapy cancer model Acta Biotheor 2019 177 200
, , ,Cité par Sources :