Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2021_16_a39, author = {Giovanni P. Galdi and Giusy Mazzone}, title = {Nonlinear stability analysis of a spinning top with an interior liquid-filled cavity}, journal = {Mathematical modelling of natural phenomena}, eid = {22}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2020053}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020053/} }
TY - JOUR AU - Giovanni P. Galdi AU - Giusy Mazzone TI - Nonlinear stability analysis of a spinning top with an interior liquid-filled cavity JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020053/ DO - 10.1051/mmnp/2020053 LA - en ID - MMNP_2021_16_a39 ER -
%0 Journal Article %A Giovanni P. Galdi %A Giusy Mazzone %T Nonlinear stability analysis of a spinning top with an interior liquid-filled cavity %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020053/ %R 10.1051/mmnp/2020053 %G en %F MMNP_2021_16_a39
Giovanni P. Galdi; Giusy Mazzone. Nonlinear stability analysis of a spinning top with an interior liquid-filled cavity. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 22. doi : 10.1051/mmnp/2020053. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020053/
[1] V.V. Chernousko, Motion of a Rigid Body with Cavities Containing a Viscous Fluid, NASA Technical Translations, Moscow (1972).
[2] F.L. Chernousko, L.D. Akulenko, and D.D. Leshchenko, Evolution of motions of a rigid body about its center of mass. Springer, Cham (2017).
[3] J.L. Daleckii and M.G. Krein, Stability of solutions of differential equations in Banach spaces. Vol. 43 of Translations of Mathematical Monographs. AMS, R.I. Providence (1974).
[4] Inertial motions of a rigid body with a cavity filled with a viscous liquid Arch. Ration. Mech. Anal 2016 487 526
, , ,[5] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, Second edition. Springer Monographs in Mathematics. Springer, New York (2011).
[6] G.P. Galdi, Stability of permanent rotations and long-time behavior of inertial motions of a rigid body with an interior liquid-filled cavity. Ch. in Particles in flows. Advances in Mathematical Fluid Mechanics. Springer (2017) 217–253.
[7] G.P. Galdi and G. Mazzone, On the motion of a pendulum with a cavity Entirelyn filled with a viscous liquid. Ch in Recent progress in the theory of the Euler and Navier-Stokes Equations. London Mathematical Society Lecture Note Series: 430. Cambridge University Press (2016) 37–56.
[8] Stability and long-time behavior of a pendulum with an interior cavity filled with a viscous liquid Mathematical Analysis of Viscous Incompressible Fluid. RIMS Kôkyûroku Proceedings No. 2058 2018 90 107
,[9] G.P. Galdi, G. Mazzone and M. Mohebbi, On the motion of a liquid-filled rigid body subject to a time-periodic torque. Recent developments of mathematical fluid mechanics. In: Advances in Mathematical Fluid Mechanics. Springer Basel (2016) 233–255.
[10] On the motion of a liquid-filled heavy body around a fixed point Quart. Appl. Math 2018 113 145
, ,[11] I. Gohberg and S. Goldberg, Classes of linear operators, Vol. 1. Birkhäuser-Verlag, Basel-Boston-Berlin (1990).
[12] D. Henry, Geometric theory of semilinear parabolic equations. In Vol. 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York (1981).
[13] T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin-New York (1966).
[14] N.D. Kopachevsky and S.G. Krein, Operator Approach to Linear Problems of Hydrodynamics, Vol. 2: Nonself–Adjoint Problems for Viscous Fluids. Birkhäuser Verlag, Basel-Boston-Berlin (2000).
[15] On the stability of a top with a cavity filled with viscous fluid (Russian) Funktsional. Anal. i Prilozhen 1998 36 55
, ,[16] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems. In Vol. 16 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Basel (1995).
[17] G. Mazzone, A mathematical analysis of the motion of a rigid body with a cavity containing a newtonian fluid. Ph.D. thesis, Università del Salento (2012).
[18] G. Mazzone, On the dynamics of a rigid body with cavities completely filled by a viscous liquid. Ph.D. thesis, University of Pittsburgh (2016).
[19] On the motion of a fluid-filled rigid body with Navier boundary conditions SIAM J. Math. Anal. 2019 1582 1606
, ,[20] A maximal regularity approach to the study of motion of a rigid body with a fluid-filled cavity J. Math. Fluid Mech 2019 44
, ,[21] N.N. Moiseyev and V.V. Rumyantsev, Dynamic stability of bodies containing fluid. Springer, New York (1968).
[22] L.A. Pars, A treatise on analytical dynamics. John Wiley Sons, Inc., New York (1965).
[23] A. Pazy, Semigroups of linear operators and applications to partial differential equations. In Vol. 44 of Applied Mathematical Sciences. Springer–Verlag, New York (1983).
[24] On convergence of solutions to equilibria for quasilinear parabolic problems. J. Differ. Equ. 2009 3902 3931
, ,[25] On the stability of stationary motions of rigid bodies with cavities containing fluid. Prikl. Mat. Meh. 26 977–991 (Russian) J. Appl. Math. Mech. 1963 1485 1505
[26] Stabilization of free rotation of an asymmetric top with cavities completely filled with a liquid Prikl. Mat. Meh 1974 980 985
[27] Motion of a high vuscous liquid in a rotating torus Prikl. Mat. Meh 1975 177 182
[28] On a new problem of mathematical physics (Russian) Izv. Akad. Nauk SSSR. Ser. Mat 1954 3 50
[29] H. Sohr, The Navier-Stokes Equations, An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel (2001).
[30]
[31] On the stability of small oscillations of a rotating asymmetric top with fluid inside Dokl. Akad. Nauk 1998 170 173
Cité par Sources :