Self-propelled motion of a rigid body inside a density dependent incompressible fluid
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 9.

Voir la notice de l'article provenant de la source EDP Sciences

This paper is devoted to the existence of a weak solution to a system describing a self-propelled motion of a rigid body in a viscous fluid in the whole ℝ3. The fluid is modelled by the incompressible nonhomogeneous Navier-Stokes system with a nonnegative density. The motion of the rigid body is described by the balance of linear and angular momentum. We consider the case where slip is allowed at the fluid-solid interface through Navier condition and prove the global existence of a weak solution.
DOI : 10.1051/mmnp/2020052

Š. Nečasová 1 ; M. Ramaswamy 2 ; A. Roy 1 ; A. Schlömerkemper 3

1 Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic.
2 Chennai Mathematical Institute, H1, SITCOT IT Park, Siruseri 603103, India.
3 Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 40, 97074 Würzburg, Germany.
@article{MMNP_2021_16_a37,
     author = {\v{S}. Ne\v{c}asov\'a and M. Ramaswamy and A. Roy and A. Schl\"omerkemper},
     title = {Self-propelled motion of a rigid body inside a density dependent incompressible fluid},
     journal = {Mathematical modelling of natural phenomena},
     eid = {9},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2020052},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020052/}
}
TY  - JOUR
AU  - Š. Nečasová
AU  - M. Ramaswamy
AU  - A. Roy
AU  - A. Schlömerkemper
TI  - Self-propelled motion of a rigid body inside a density dependent incompressible fluid
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020052/
DO  - 10.1051/mmnp/2020052
LA  - en
ID  - MMNP_2021_16_a37
ER  - 
%0 Journal Article
%A Š. Nečasová
%A M. Ramaswamy
%A A. Roy
%A A. Schlömerkemper
%T Self-propelled motion of a rigid body inside a density dependent incompressible fluid
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020052/
%R 10.1051/mmnp/2020052
%G en
%F MMNP_2021_16_a37
Š. Nečasová; M. Ramaswamy; A. Roy; A. Schlömerkemper. Self-propelled motion of a rigid body inside a density dependent incompressible fluid. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 9. doi : 10.1051/mmnp/2020052. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020052/

[1] H. Al Baba, N.V. Chemetov, Š. Nečasová, B. Muha Strong solutions in L2 framework for fluid-rigid body interaction problem. Mixed case Topol. Methods Nonlinear Anal. 2018 337 350

[2] F. Alouges, A. Desimone, A. Lefebvre Optimal strokes for low Reynolds number swimmers : an example J. Nonlinear Sci 2008 277 302

[3] T. Bodnár, G.P. Galdi and Š. Nečasová, Fluid-Structure Interaction and Biomedical Applications. Birkhäuser/Springer, Basel (2014).

[4] T. Bodnár, G.P. Galdi and Š. Nečasová, Particles in flows. Advances in Mathematical Fluid Mechanics. Birkhäuser/Springer, Cham (2017).

[5] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models. Vol. 183 of Applied Mathematical Sciences. Springer, New York (2013).

[6] A. Bressan Impulsive control of Lagrangian systems and locomotion in fluids Discrete Contin. Dyn. Syst 2008 1 35

[7] D. Bucur, E. Feireisl, Š. Nečasová Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions Arch. Ration. Mech. Anal 2010 117 138

[8] T. Chambrion, A. Munnier locomotion and control of a self-propelled shape-changing body in a fluid J. Nonlinear Sci 2011 325 385

[9] N.V. Chemetov, Š. Nečasová The motion of the rigid body in the viscous fluid including collisions. Global solvability result Nonlinear Anal. Real World Appl. 2017 416 445

[10] C. Conca, M. Tucsnak Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid Commun. Partial Differ. Equ 2000 1019 1042

[11] P. Cumsille, T. Takahashi Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid Czechoslovak Math. J 2008 961 992

[12] B. Desjardins Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space Differ. Integral Equ 1997 587 598

[13] B. Desjardins, M.J. Esteban Existence of weak solutions for the motion of rigid bodies in a viscous fluid Arch. Ration. Mech. Anal 1999 59 71

[14] B. Desjardins, M.J. Esteban On weak solutions for fluid-rigid structure interaction : compressible and incompressible models Commun. Partial Differ. Equ 2000 1399 1413

[15] R.J. Diperna, P.L. Lions Ordinary differential equations, transport theory and Sobolev spaces Invent. Math 1989 511 547

[16] G. Galdi On the steady self-propelled motion of a body in a viscous incompressible fluid Arch. Rat. Mech. Anal 1999 53 88

[17] G.P. Galdi, On the motion of a rigid body in a viscous liquid : a mathematical analysis with applications, in Vol. I of Handbook of mathematical fluid dynamics. North-, Amsterdam (2002) 653–791.

[18] M. Geissert, K. Götze, M. Hieber Lp-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids Trans. Am. Math. Soc 2013 1393 1439

[19] D. Gérard-Varet, M. Hillairet Existence of weak solutions up to collision for viscous fluid-solid systems with slip Commun. Pure Appl. Math 2014 2022 2075

[20] D. Gérard-Varet, M. Hillairet, C. Wang The influence of boundary conditions on the contact problem in a 3d Navier-Stokes flow J. Math. Pures Appl 2015 1 38

[21] D. Gérard-Varet, N. Masmoudi Relevance of the slip condition for fluid flows near an irregular boundary Commun. Math. Phys 2010 99 137

[22] M.D. Gunzburger, H.-C. Lee, G.A. Seregin Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions J. Math. Fluid Mech 2000 219 266

[23] W. Jäger, A. Mikelić On the roughness-induced effective boundary conditions for an incompressible viscous flow J. Differ. Equ 2001 96 122

[24] P.-L. Lions, Mathematical topics in fluid mechanics. Incompressible models. Vols. 1 and vol. 3 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York (1996).

[25] D. Maity and M. Tucsnak, Lp-Lq maximal regularity for some operators associated with linearized incompressible fluid-rigid body problems. Mathematical analysis in fluid mechanics–selected recent results. In Vol. 710 of Contemporary Mathematics. AMS Providence (2018) 175–201.

[26] J.A.S. Martín, V. Starovoitov, M. Tucsnak Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid Arch. Ration. Mech. Anal 2002 113 147

[27] M. Padula On the existence and uniqueness of nonhomogeneous motions in exterior domains Math. Z 1990 581 604

[28] G. Planas, F. Sueur On the “viscous incompressible fluid + rigid body” system with Navier conditions Ann. Inst. Henri Poincaré Anal. Non Linéaire 2014 55 80

[29] J. San Martín, T. Takahashi, M. Tucsnak A control theoretic approach to the swimming of microscopic organisms Quart. Appl. Math 2007 405 424

[30] D. Serre Chute libre d’un solide dans un fluide visqueux incompressible Jpn. J. Appl. Math 1987 99 110

[31] M. Sigalotti, J.-C. Vivalda Controllability properties of a class of systems modeling swimming microscopic organisms ESAIM: COCV 2010 1053 1076

[32] A.L. Silvestre On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions J. Math. Fluid Mech 2002 285 326

[33] A.L. Silvestre On the slow motion of a self-propelled rigid body in a viscous incompressible fluid J. Math. Anal. Appl 2002 203 227

[34] J. Simon Compact sets in the space Lp(0, T Ann. Mat. Pura Appl 1987 65 96

[35] J. Simon Nonhomogeneous viscous incompressible fluids : existence of velocity, density, and pressure SIAM J. Math. Anal 1990 1093 1117

[36] V.N. Starovoitov Solvability of the problem of the self-propelled motion of several rigid bodies in a viscous incompressible fluid Comput. Math. Appl 2007 413 435

[37] T. Takahashi Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain Adv. Differ. Equ 2003 1499 1532

[38] C. Wang Strong solutions for the fluid-solid systems in a 2-d domain Asymptot. Anal 2014 263 306

Cité par Sources :