Voir la notice de l'article provenant de la source EDP Sciences
Š. Nečasová 1 ; M. Ramaswamy 2 ; A. Roy 1 ; A. Schlömerkemper 3
@article{MMNP_2021_16_a37, author = {\v{S}. Ne\v{c}asov\'a and M. Ramaswamy and A. Roy and A. Schl\"omerkemper}, title = {Self-propelled motion of a rigid body inside a density dependent incompressible fluid}, journal = {Mathematical modelling of natural phenomena}, eid = {9}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2020052}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020052/} }
TY - JOUR AU - Š. Nečasová AU - M. Ramaswamy AU - A. Roy AU - A. Schlömerkemper TI - Self-propelled motion of a rigid body inside a density dependent incompressible fluid JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020052/ DO - 10.1051/mmnp/2020052 LA - en ID - MMNP_2021_16_a37 ER -
%0 Journal Article %A Š. Nečasová %A M. Ramaswamy %A A. Roy %A A. Schlömerkemper %T Self-propelled motion of a rigid body inside a density dependent incompressible fluid %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020052/ %R 10.1051/mmnp/2020052 %G en %F MMNP_2021_16_a37
Š. Nečasová; M. Ramaswamy; A. Roy; A. Schlömerkemper. Self-propelled motion of a rigid body inside a density dependent incompressible fluid. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 9. doi : 10.1051/mmnp/2020052. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020052/
[1] Strong solutions in L2 framework for fluid-rigid body interaction problem. Mixed case Topol. Methods Nonlinear Anal. 2018 337 350
, , ,[2] Optimal strokes for low Reynolds number swimmers : an example J. Nonlinear Sci 2008 277 302
, ,[3] T. Bodnár, G.P. Galdi and Š. Nečasová, Fluid-Structure Interaction and Biomedical Applications. Birkhäuser/Springer, Basel (2014).
[4] T. Bodnár, G.P. Galdi and Š. Nečasová, Particles in flows. Advances in Mathematical Fluid Mechanics. Birkhäuser/Springer, Cham (2017).
[5] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models. Vol. 183 of Applied Mathematical Sciences. Springer, New York (2013).
[6] Impulsive control of Lagrangian systems and locomotion in fluids Discrete Contin. Dyn. Syst 2008 1 35
[7] Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions Arch. Ration. Mech. Anal 2010 117 138
, ,[8] locomotion and control of a self-propelled shape-changing body in a fluid J. Nonlinear Sci 2011 325 385
,[9] The motion of the rigid body in the viscous fluid including collisions. Global solvability result Nonlinear Anal. Real World Appl. 2017 416 445
,[10] Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid Commun. Partial Differ. Equ 2000 1019 1042
,[11] Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid Czechoslovak Math. J 2008 961 992
,[12] Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space Differ. Integral Equ 1997 587 598
[13] Existence of weak solutions for the motion of rigid bodies in a viscous fluid Arch. Ration. Mech. Anal 1999 59 71
,[14] On weak solutions for fluid-rigid structure interaction : compressible and incompressible models Commun. Partial Differ. Equ 2000 1399 1413
,[15] Ordinary differential equations, transport theory and Sobolev spaces Invent. Math 1989 511 547
,[16] On the steady self-propelled motion of a body in a viscous incompressible fluid Arch. Rat. Mech. Anal 1999 53 88
[17] G.P. Galdi, On the motion of a rigid body in a viscous liquid : a mathematical analysis with applications, in Vol. I of Handbook of mathematical fluid dynamics. North-, Amsterdam (2002) 653–791.
[18] Lp-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids Trans. Am. Math. Soc 2013 1393 1439
, ,[19] Existence of weak solutions up to collision for viscous fluid-solid systems with slip Commun. Pure Appl. Math 2014 2022 2075
,[20] The influence of boundary conditions on the contact problem in a 3d Navier-Stokes flow J. Math. Pures Appl 2015 1 38
, ,[21] Relevance of the slip condition for fluid flows near an irregular boundary Commun. Math. Phys 2010 99 137
,[22] Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions J. Math. Fluid Mech 2000 219 266
, ,[23] On the roughness-induced effective boundary conditions for an incompressible viscous flow J. Differ. Equ 2001 96 122
,[24] P.-L. Lions, Mathematical topics in fluid mechanics. Incompressible models. Vols. 1 and vol. 3 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York (1996).
[25] D. Maity and M. Tucsnak, Lp-Lq maximal regularity for some operators associated with linearized incompressible fluid-rigid body problems. Mathematical analysis in fluid mechanics–selected recent results. In Vol. 710 of Contemporary Mathematics. AMS Providence (2018) 175–201.
[26] Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid Arch. Ration. Mech. Anal 2002 113 147
, ,[27] On the existence and uniqueness of nonhomogeneous motions in exterior domains Math. Z 1990 581 604
[28] On the “viscous incompressible fluid + rigid body” system with Navier conditions Ann. Inst. Henri Poincaré Anal. Non Linéaire 2014 55 80
,[29] A control theoretic approach to the swimming of microscopic organisms Quart. Appl. Math 2007 405 424
, ,[30] Chute libre d’un solide dans un fluide visqueux incompressible Jpn. J. Appl. Math 1987 99 110
[31] Controllability properties of a class of systems modeling swimming microscopic organisms ESAIM: COCV 2010 1053 1076
,[32] On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions J. Math. Fluid Mech 2002 285 326
[33] On the slow motion of a self-propelled rigid body in a viscous incompressible fluid J. Math. Anal. Appl 2002 203 227
[34] Compact sets in the space Lp(0, T Ann. Mat. Pura Appl 1987 65 96
[35] Nonhomogeneous viscous incompressible fluids : existence of velocity, density, and pressure SIAM J. Math. Anal 1990 1093 1117
[36] Solvability of the problem of the self-propelled motion of several rigid bodies in a viscous incompressible fluid Comput. Math. Appl 2007 413 435
[37] Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain Adv. Differ. Equ 2003 1499 1532
[38] Strong solutions for the fluid-solid systems in a 2-d domain Asymptot. Anal 2014 263 306
Cité par Sources :