Voir la notice de l'article provenant de la source EDP Sciences
Samhita Das 1 ; Pritha Das 1 ; Parthasakha Das 1
@article{MMNP_2020_15_a65, author = {Samhita Das and Pritha Das and Parthasakha Das }, title = {Control of {Nipah} virus outbreak in commercial pig-farm with biosecurity and culling}, journal = {Mathematical modelling of natural phenomena}, eid = {64}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020047}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020047/} }
TY - JOUR AU - Samhita Das AU - Pritha Das AU - Parthasakha Das TI - Control of Nipah virus outbreak in commercial pig-farm with biosecurity and culling JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020047/ DO - 10.1051/mmnp/2020047 LA - en ID - MMNP_2020_15_a65 ER -
%0 Journal Article %A Samhita Das %A Pritha Das %A Parthasakha Das %T Control of Nipah virus outbreak in commercial pig-farm with biosecurity and culling %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020047/ %R 10.1051/mmnp/2020047 %G en %F MMNP_2020_15_a65
Samhita Das; Pritha Das; Parthasakha Das . Control of Nipah virus outbreak in commercial pig-farm with biosecurity and culling. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 64. doi : 10.1051/mmnp/2020047. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020047/
[1] Mathematical model of Ebola transmission dynamics with relapse and reinfection Math. Biosci 2017 48 59
[2] A vaccination model for transmission dynamics of influenza SIAM J. Appl. Dyn. Syst 2004 503 524
, , , , ,[3] Optimal control of Nipah virus (NIV) infections: A Bangladesh scenario J. Pure Appl. Math 2014 77 104
[4] A mathematical model for understanding the spread of Nipah fever epidemic in Bangladesh 2015 International Conference on Industrial Engineering and Operations Management (IEOM) 2015 1 8
, ,[5] Dynamical models of Tuberculosis and their applications Math. Biosci. Eng 2004 361 404
,[6] Modeling avian influenza using Filippov systems to determine culling of infected birds and quarantine Nonlinear Anal.: Real World Appl 2015 196 218
,[7] Rapid emergence of co-colonization with community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains in the hospital setting MMNP 2010 76 93
, ,[8] Quantifying the impact of bacterial fitness and repeated antimicrobial exposure on the emergence of multidrug-resistant gram-negative bacilli MMNP 2007 129 142
, ,[9] Dynamics and control of multidrug-resistant bacterial infection in hospital with multiple delays Commun. Nonlinear Sci. Numer. Simul 2020 105279
, ,[10] Effects of delayed immune-activation in the dynamics of tumor-immune interactions MMNP 2020 45
, ,[11] models of disease shed light on Nipah virus pathogenesis and transmission J. Pathol 2015 196 205
, ,[12] Mapping disease transmission risk of Nipah virus in south and Southeast Asia Trop. Med. Infect. Disease 2018 05
,[13] Mathematical analysis of the dynamical transmission of Neisseria meningitidis serogroup A Int. J. Comput. Math 2017 2409 2434
, , ,[14] Climate change and emerging infectious diseases Microb. Infection 2001 747 754
[15] W.H. Fleming and R.W. Rishel, Deterministic and stochastic optimal control. Applications of mathematics. Springer-Verlag (1975).
[16] Food and Agriculture Organization of the United Nations. Farmer’s Hand Book on Pig Production (2009).
[17] B. Gomero, Latin hypercube sampling and partial rank correlation coefficient analysis applied to an optimal control problem. Master’s thesis, University of Tennessee, Knoxville (2012).
[18] J. Guckenheimer and P. Holmes, Nonlinear Oscillations Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences. Springer, New York (1983).
[19] Global dynamics of a two-strain Avian influenza model Int. J. Comput. Math 2009 85 108
[20] Forward hysteresis and backward bifurcation caused by culling in an Avian influenza model Math. Biosci 2013 202 212
,[21] Optimal vaccination, treatment, and preventive campaigns in regard to the SIR epidemic model MMNP 2014 105 121
,[22] Optimal control for a SIR epidemic model with nonlinear incidence rate MMNP 2016 89 104
, ,[23] Urbanization and disease emergence: Dynamics at the wildlife-livestock-human interface Trends Ecol. Evol 2017 55 67
, , ,[24] Transmission of Human Infection with Nipah Virus Clin. Infect. Dis 2009 1743 1748
, , , ,[25] Pig production in Cambodia, Laos, Philippines, and Vietnam: a review Asian J. Agric. Dev 2007
, , ,[26] Optimal vaccination strategies for an influenza epidemic model J. Biol. Syst 2013 1340006
,[27] Nipah virus infection-Malaysia experience 2011 2019
,[28] S. Lenhart and J.T. Workman, Optimal Control Applied to Biological Models. CRC Press (2007).
[29] Modeling the role of public health education in Ebola virus disease outbreaks in Sudan Infect. Dis. Model 2017 323 340
, , , , , , , , ,[30] Lessons from the Nipah virus outbreak in Malaysia Malaysian J. Pathol 2007 63 67
,[31] A methodology for performing global uncertainty and sensitivity analysis in systems biology J. Theor. Biol 2008 178 196
, , ,[32] A mathematical analysis for controlling the spread of Nipah virus infection Int. J. Model. Simul 2017 185 197
, ,[33] High turnover drives prolonged persistence of influenza in managed pig herds J. Royal Soc. Interface 2016 20160138
, , , , ,[34] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes. John Wiley Sons (1962).
[35] Status of vaccine research and development of vaccines for Nipah virus Vaccine 2016 2971 2975
, ,[36] Mathematical modelling for zoonotic Visceral Leishmaniasis dynamics: a new analysis considering updated parameters and notified human Brazilian data Infectious Disease Model 2017 143 160
, ,[37] P. van den Driessche and J. Watmough, Further Notes on the Basic Reproduction Number. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).
[38] Emerging zoonotic viral diseases Rev. Sci. Tech 2014 569 581
,[39] Hendra and Nipah viruses: pathogenesis, animal models and recent breakthroughs in vaccination Vaccine: Dev. Therapy 2015 09
[40] Global trends in infectious diseases at the wildlife-livestock interface Proc. Natl. Acad. Sci 2015 9662 9667
, , ,[41] Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches PeerJ 2018 e4526
, ,Cité par Sources :