Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2020_15_a66, author = {Salisu M. Garba and Usman A. Danbaba}, title = {Modeling the effect of temperature variability on malaria control strategies}, journal = {Mathematical modelling of natural phenomena}, eid = {65}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020044}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020044/} }
TY - JOUR AU - Salisu M. Garba AU - Usman A. Danbaba TI - Modeling the effect of temperature variability on malaria control strategies JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020044/ DO - 10.1051/mmnp/2020044 LA - en ID - MMNP_2020_15_a66 ER -
%0 Journal Article %A Salisu M. Garba %A Usman A. Danbaba %T Modeling the effect of temperature variability on malaria control strategies %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020044/ %R 10.1051/mmnp/2020044 %G en %F MMNP_2020_15_a66
Salisu M. Garba; Usman A. Danbaba. Modeling the effect of temperature variability on malaria control strategies. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 65. doi : 10.1051/mmnp/2020044. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020044/
[1] Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics J. Math. Biol 2017 1351 1395
,[2] Qualitative assessment of the role of temperature variations on malaria transmission dynamics J. Biolog. Syst 2015 1550030
, ,[3] Epidemic malaria and warmer temperatures in recent decades in an East African highland Proc. Roy. Soc. Lond. B 2011 1661 1669
, ,[4] Mathematical modeling of sterile insect technology for control of anopheles mosquito Comput. Math. Appl 2012 374 389
, ,[5] Implications of temperature variation for malaria parasite development across Africa Sci. Rep 2013 1300
, , , , , ,[6] A novel rate model of temperature-dependent development for arthropods Environ. Entomol 1999 22 29
, , ,[7] Charting pathways to climate change mitigation in a coupled socio-climate model PLoS Comput. Biol 2019 e1007000
, ,[8] Impact of climate change on global malaria distribution Proc. Natl. Acad. Sci 2014 3286 3291
, , , , , , , ,[9] Dynamical models of tuberculosis and their applications Math. Biosci. Eng 2004 361 404
,[10] Bifurcation analysis of a mathematical model for malaria transmission SIAM J. Appl. Math 2006 24 45
, ,[11] U.A. Danbaba and S.M. Garba, Analysis of model for the transmission dynamics of Zika with sterile insect technique. In: Mathematical Methods and Models in Biosciences, edited by R. Anguelov, M. Lachowicz. Biomath Forum, Sofia, GNU General Public License, University British Columbia, Canada (2018) 81–99. https://doi.org/10.11145/texts.2018.01.083.
[12] Modeling the transmission dynamics of Zika with sterile insect technique Math. Methods Appl. Sci 2018 8871 8896
,[13] Malaria model with periodic mosquito birth and death rates J. Biol. Dyn 2009 430 445
, ,[14] On a temporal model for the Chikungunya disease: modeling, theory and numerics Math. Biosci 2008 80 91
, ,[15] Vector control for the Chikungunya disease Math. Biosci. Eng 2010 313 345
,[16] Dynamical resonance can account for seasonality of influenza epidemics Proc. Natl. Acad. Sci 2004 16915 16916
, , ,[17] Mathematical modeling of climate change and malaria transmission dynamics: a historical review J. Math. Biol 2018 1 77
,[18] Backward bifurcations in dengue transmission dynamics Math. Biosci 2008 11 25
, ,[19] Effect of cross-immunity on the transmission dynamics of two strains of dengue Int. J. Comput. Math 2010 2361 2384
,[20] Mathematical analysis of West Nile virus model with discrete delays Acta Math. Sci 2013 1439 1462
,[21] SIRS epidemic model and simulations using different types of seasonal contact rate Syst. Anal. Model. Simul 2010 573 600
,[22] Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax Parasites Vectors 2011 92
, , , , , ,[23] The type-reproduction number T in models for infectious disease control Math. Biosci 2007 3 10
,[24] Simulation of the seasonal cycles of bird, equine and human West Nile virus cases Prevent. Veter. Med 2011 99 110
, ,[25] A climate-based malaria transmission model with structured vector population SIAM J. Appl. Math 2010 2023 2044
,[26] Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate Math. Biosci. Eng 2005 591 611
,[27] Optimal temperature for malaria transmission is dramatically lower than previously predicted Ecol. Lett 2013 22 30
, , , , , , , , , ,[28] Malaria transmission potential could be reduced with current and future climate change Sci. Rep 2016 27771
, ,[29] A mathematical model for endemic malaria with variable human and mosquito populations Math. Comput. Model 2000 747 763
,[30] Mathematical analysis of the role of repeated exposure on malaria transmission dynamics Differ. Equ. Dyn. Syst 2008 251 287
,[31] Analysis of a temperature-and rainfall-dependent model for malaria transmission dynamics Math. Biosci 2017 72 92
,[32] Weather-driven malaria transmission model with gonotrophic and sporogonic cycles J. Biol. Dyn 2019 288 324
, ,[33] S. Olaniyi, K.O. Okosun, O. Adesanya and E.A. Areo, Global stability and optimal control analysis of malaria dynamics in the presence of human travelers. 10 (2018) 166–186.
[34] Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission Philo. Trans. R. Soc. B 2015 20130551
, , , , , , , , , ,[35] Public health impact and cost-effectiveness of the RT, S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models The Lancet 2016 367 375
, , , , , , , , , ,[36] Explaining Usutu virus dynamics in Austria: model development and calibration Prev. Veter. Med 2008 166 186
, , , , , ,[37] A hydrologically driven model of swamp water mosquito population dynamics Ecol. Model 2006 395 404
, , ,[38] Malaria-an overview FEBS J 2007 4670 4679
[39] Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci. 2002 29 48
,[40] Threshold dynamics for compartmental epidemic models in periodic environments J. Dyn. Differ. Equ 2008 699 717
,[41] Vaccine approaches to malaria control and elimination: Insights from mathematical models Vaccine 2015 7544 7550
, , ,[42] Malaria: World Health Organization fact-sheets. Available at http://www.who.int/news-room/fact-sheets/detail/malaria accessed on 1st August (2018).
[43] A mathematical model for malaria transmission relating global warming and local socioeconomic conditions Rev. Saude Pub 2001 224 231
Cité par Sources :