Voir la notice de l'article provenant de la source EDP Sciences
Qamar Din 1 ; Nafeesa Saleem 1 ; Muhammad Sajjad Shabbir 2
@article{MMNP_2020_15_a24, author = {Qamar Din and Nafeesa Saleem and Muhammad Sajjad Shabbir}, title = {A class of discrete predator{\textendash}prey interaction with bifurcation analysis and chaos control}, journal = {Mathematical modelling of natural phenomena}, eid = {60}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020042}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020042/} }
TY - JOUR AU - Qamar Din AU - Nafeesa Saleem AU - Muhammad Sajjad Shabbir TI - A class of discrete predator–prey interaction with bifurcation analysis and chaos control JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020042/ DO - 10.1051/mmnp/2020042 LA - en ID - MMNP_2020_15_a24 ER -
%0 Journal Article %A Qamar Din %A Nafeesa Saleem %A Muhammad Sajjad Shabbir %T A class of discrete predator–prey interaction with bifurcation analysis and chaos control %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020042/ %R 10.1051/mmnp/2020042 %G en %F MMNP_2020_15_a24
Qamar Din; Nafeesa Saleem; Muhammad Sajjad Shabbir. A class of discrete predator–prey interaction with bifurcation analysis and chaos control. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 60. doi : 10.1051/mmnp/2020042. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020042/
[1] Stabilization of period–doubling bifurcation and implications for control of chaos Physica D 1994 154 164
, ,[2] Moving forward in circles: challenges and opportunities in modelling population cycles Ecol. Lett 2017 1074 1092
, ,[3] The balance of animal populations Proc. Zool. Soc. Lond 1935 551 598
,[4] Neimark–Sacker bifurcation and stability of a certain class of a host–parasitoid models with a host refuge effect Int. J. Bifurcat. Chaos 2019 195169
, , ,[5] Stability of a certain class of a host–parasitoid models with a spatial refuge effect J. Biol. Dyn 2020 1 31
, , ,[6] Dynamic complexity in predator–prey models framed in difference equations Nature 1975 58 60
, ,[7] M. Begon, C. Townsend, L. John, R. Colin and L.H. John, Ecology: From Individuals to Ecosystems. Oxford, Blackwell Publishing Ltd (2006).
[8] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology. New York, Springer (2012).
[9] Discrete epidemic models Math. Biosci. Eng 2010 1 15
, ,[10] J. Carr, Application of Center Manifold Theory. Springer–Verlag, New York (1981).
[11] Controlling Hopf bifurcations: discrete–time systems Discrete Dyn. Nat. Soc 2000 29 33
, , ,[12] On time–delayed feedback control of chaotic systems IEEE Trans. Circ. Sys 1999 767 772
,[13] Warming can destabilise predator—prey interactions by shifting the functional response from Type III to Type II J. Anim. Ecol 2019 1575 1586
, ,[14] Predator—prey dynamics and the plasticity of predator body size Funct. Ecol 2014 487 493
, ,[15] Complexity and chaos control in a discrete-time prey—predator model Commun. Nonlinear Sci. Numer. Simul 2017 113 134
[16] Bifurcation analysis and chaos control for a predator–prey system J. Vib. Control 2019 612 626
,[17] A novel chaos control strategy for discrete-time Brusselator models J. Math. Chem 2018 3045 3075
[18] Periodic solutions of a discrete time nonautonomous ratio–dependent predator—prey system Math. Comput. Model 2002 951 961
,[19] J. Guckenheimer and P. Holmes, Nonlinear Oscillations Dynamical Systems, and Bifurcations of Vector Fields. Springer–Verlag, New York (1983).
[20] The discrete Rosenzweig model Math. Biosci 1990 49 72
,[21] A. Hastings, Population Biology: Concepts and Models. Springer, New York (1997).
[22] M.P. Hassell, The dynamics of arthropod predator—prey systems. Princeton University Press, Princeton (1978).
[23] New inductive population model for insect parasites and its bearing on biological control Nature 1969 1133 1137
,[24] Coexistence for systems governed by difference equations of Lotka–Volterra type J. Math. Biol 1987 553 570
, ,[25] On the global behaviour of May’s host–parasitoid model J. Differ. Equ. Appl 2019 583 596
[26] Chaos in functional response host-parasitoid ecosystem models Chaos Soliton Fract 1999 331 341
, ,[27] Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches Ecology 1999 1789 1805
, ,[28] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory. Springer-Verlag, New York (1997).
[29] L–shaped prey isocline in the Gause predator—prey experiments with a prey refuge J. Theor. Biol 2015 21 26
,[30] Dynamic complexity and bifurcation analysis of a host–parasitoid model with Allee effect and Holling type III functional response Adv. Differ. Equ 2019 507
, , , ,[31] Bifurcation and chaos in a host–parasitoid model with a lower bound for the host Adv. Differ. Equ 2018 31
, ,[32] Discrete competitive and cooperative models of Lotka–Volterra type J. Comput. Anal. Appl 2001 53 73
,[33] Complex dynamic behaviors of a discrete–time predator—prey system Chaos Soliton Fract 2007 80 94
,[34] The dynamic complexity of a host–parasitoid model with a lower bound for the host Chaos Soliton Fract 2008 911 919
,[35] Hybrid control of period–doubling bifurcation and chaos in discrete nonlinear dynamical systems Chaos Soliton Fract 2003 775 783
, , ,[36] Host–parasitoid systems in patchy environments: a phenomenological model J. Animal Ecol 1978 833 844
[37] Density dependence in host-parasitoid models J. Animal Ecol 1981 855 865
, , ,[38] W.W. Murdoch, C.J. Briggs and R.M. Nisbet, Consumer–Resource Dynamics. Princeton and Oxford, Princeton University Press (2003).
[39] The subcritical collapse of predator populations in discrete time predator—prey models Math. Biosci 1992 45 66
,[40] K. Ogata, Modern Control Engineering, 2nd edition. Prentice-Hall, Englewood, New Jersey (1997).
[41] Controlling chaos Phys. Rev. Lett 1990 1196 1199
, ,[42] Codimension–Two Bifurcation Chaos and control in a discrete–time information diffusion model J. Nonlinear Sci 2016 1895 1931
,[43] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos. Boca Raton, New York (1999).
[44] Controlling chaotic dynamical systems Physica D 1992 165 192
, , ,[45] Fitting functional responses: direct parameter estimation by simulating differential equations Methods Ecol. Evol 2018 2076 2090
,[46] Graphical representation and stability conditions of predator—prey interactions Am. Nat 1963 209 223
,[47] Predicting the population dynamics in Amoebophrya parasitoids and their dinoflagellate hosts using a mathematical model Mar. Ecol. Prog. Ser 2010 1 10
,[48] Chaos in functional response host-parasitoid ecosystem models Chaos Soliton Fract 2002 875 884
,[49] The stability and the intrinsic growth rates of prey and predator populations Ecology 1975 855 867
[50] Parasitiod competition and the dynamics of host-parasitiod models Am. Nat 1988 417 436
[51] P. Turchin, Complex Population Dynamics. A Theoretical/Empirical Synthesis. Princeton, Princeton University Press (2003).
[52] predator—prey cycles are driven by the amplitude of prey oscillations Ecol. Evol 2018 6317 6329
, ,[53] Computation of the stability condition for the Hopf bifurcation of diffeomorphism on R2 SIAM.J. Appl. Math 1978 167 175
[54] Controlling Hopf bifurcations of discrete–time systems in resonance Chaos Soliton Fract 2005 1865 1877
, ,[55] Global stability of discrete models of Lotka–Volterra type Nonlinear Anal. Theor 1999 1019 1030
,[56] Hydra effect and paradox of enrichment in discrete–time predator—prey models Math. Biosci 2019 120 127
, ,[57] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer–Verlag, New York (2003).
[58] Global qualitative analysis of a discrete host–parasitoid model with refuge and strong Allee effects Math. Method. Appl. Sci 2018 2039 2062
,[59] Dynamic complexities in a mutual interference host-parasitoid model Chaos Soliton Fract 2005 175 182
,[60] Bifurcation, invariant curve and hybrid control in a discrete–time predator—prey system Appl. Math. Model 2015 2345 2362
,[61] Bifurcation analysis and control of a discrete harvested prey–predator system with Beddington–DeAngelis functional response J. Franklin Inst 2010 1076 1096
, ,[62] Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host Chaos Soliton Fract 2009 1259 1269
,Cité par Sources :