A stochastic time-delayed model for the effectiveness of Moroccan COVID-19 deconfinement strategy
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 50.

Voir la notice de l'article provenant de la source EDP Sciences

Coronavirus disease 2019 (COVID-19) poses a great threat to public health and the economy worldwide. Currently, COVID-19 evolves in many countries to a second stage, characterized by the need for the liberation of the economy and relaxation of the human psychological effects. To this end, numerous countries decided to implement adequate deconfinement strategies. After the first prolongation of the established confinement, Morocco moves to the deconfinement stage on May 20, 2020. The relevant question concerns the impact on the COVID-19 propagation by considering an additional degree of realism related to stochastic noises due to the effectiveness level of the adapted measures. In this paper, we propose a delayed stochastic mathematical model to predict the epidemiological trend of COVID-19 in Morocco after the deconfinement. To ensure the well-posedness of the model, we prove the existence and uniqueness of a positive solution. Based on the large number theorem for martingales, we discuss the extinction of the disease under an appropriate threshold parameter. Moreover, numerical simulations are performed in order to test the efficiency of the deconfinement strategies chosen by the Moroccan authorities to help the policy makers and public health administration to make suitable decisions in the near future.
DOI : 10.1051/mmnp/2020040

Houssine Zine 1 ; Adnane Boukhouima 2 ; El Mehdi Lotfi 2 ; Marouane Mahrouf 2 ; Delfim F.M. Torres 1 ; Noura Yousfi 2

1 Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal.
2 Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, P.B 7955 Sidi Othman, Casablanca, Morocco.
@article{MMNP_2020_15_a16,
     author = {Houssine Zine and Adnane Boukhouima and El Mehdi Lotfi and Marouane Mahrouf and Delfim F.M. Torres and Noura Yousfi},
     title = {A stochastic time-delayed model for the effectiveness of {Moroccan} {COVID-19} deconfinement strategy},
     journal = {Mathematical modelling of natural phenomena},
     eid = {50},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020040},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020040/}
}
TY  - JOUR
AU  - Houssine Zine
AU  - Adnane Boukhouima
AU  - El Mehdi Lotfi
AU  - Marouane Mahrouf
AU  - Delfim F.M. Torres
AU  - Noura Yousfi
TI  - A stochastic time-delayed model for the effectiveness of Moroccan COVID-19 deconfinement strategy
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020040/
DO  - 10.1051/mmnp/2020040
LA  - en
ID  - MMNP_2020_15_a16
ER  - 
%0 Journal Article
%A Houssine Zine
%A Adnane Boukhouima
%A El Mehdi Lotfi
%A Marouane Mahrouf
%A Delfim F.M. Torres
%A Noura Yousfi
%T A stochastic time-delayed model for the effectiveness of Moroccan COVID-19 deconfinement strategy
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020040/
%R 10.1051/mmnp/2020040
%G en
%F MMNP_2020_15_a16
Houssine Zine; Adnane Boukhouima; El Mehdi Lotfi; Marouane Mahrouf; Delfim F.M. Torres; Noura Yousfi. A stochastic time-delayed model for the effectiveness of Moroccan COVID-19 deconfinement strategy. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 50. doi : 10.1051/mmnp/2020040. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020040/

[1] S.G. Baum, COVID-19 incubation period: An update, Journal Watch. Available from https://www.jwatch.org/na51083/2020/03/13/covid-19incubation-period-update (2020).

[2] M.S. Boudrioua and A. Boudrioua, Predicting the COVID-19 epidemic in Algeria using the SIR model. Preprint medRxiv 20079467v1 (2020).

[3] D. Fanelli, F. Piazza Analysis and forecast of COVID-19 spreading in China, Italy and France Chaos Solitons Fract 2020 109761

[4] A.E. Gorbalenya, S.C. Baker, R.S. Baric, R.J. De Groot, C. Drosten, A.A. Gulyaeva, B.L. Haagmans, C. Lauber, A.M. Leontovich, B.W. Neuman, D. Penzar, S. Perlman, L.L.M. Poon, D.V. Samborskiy, I.A. Sidorov, I. Sola, J. Ziebuhr The species severe acute respiratory syndrome related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 Nat. Microbiol 2020 1 9

[5] A. Grai, D. Greenhalgh, L. Hu, X. Mao, J. Pan A stochastic differential equations SIS epidemic model SIAM J. Appl. Math 2011 876 902

[6] Haut Conseil de la Santé Publique, Avis relatif aux recommandations thérapeutiques dans la prise en charge du COVID-19 (complémentaire A l’avis du 5mars 2020). Available from: https://sfar.org/avis-relatif-aux-recommandations-therapeutiques-dans-la-prise-en-charge-du-covid-19/ (2020).

[7] D.J. Higham An algorithmic introduction to numerical simulation of stochastic differential equations SIAM Rev 2001 525 546

[8] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao Clinical features of patients infectedwith 2019 novel coronavirus in Wuhan, China Lancet 2020 497 506

[9] B. Ivorra, M.R. Ferrandez, M. Vela-Perez, A.M. Ramos Mathematical modeling of the spread of the coronavirusdisease 2019 (COVID-19) taking into account the undetected infections. The case of China Commun. Nonlinear Sci. Numer. Simul 2020 105303

[10] T. Kuniya Prediction of the epidemic peak of coronavirus disease in Japan, 2020 J. Clin. Med 2020 789

[11] M. Mahrouf, K. Hattaf, N. Yousfi Dynamics of a stochastic viral infection model with immune response MMNP 2017 15 32

[12] X. Mao, Stochastic differential equations and applications, second edition. Horwood Publishing Limited, Chichester, (2008).

[13] Ministry of Health of Morocco, Department of Epidemiology and Disease Control. Available from: http://www.sante.gov.ma/Pages/Accueil.aspx (2020).

[14] Ministry of Health of Morocco The official portal of Corona virus in Morocco. 2020

[15] K. Mizumoto, K. Kagaya, A. Zarebski, G. Chowell Estimating the asymptomatic proportion of coronavirusdisease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020 Euro Surveill 2020 2000180

[16] F. Ndaïrou, I. Area, J.J. Nieto, D.F.M. Torres Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan Chaos Solitons Fract 2020 109846

[17] M. Ozair, T. Hussain, M. Hussain, A.U. Awan and D. Baleanu, Estimation of transmission potential and severity of COVID-19 in Romania and Pakistan. Preprint medRxiv 20088989v1 (2020).

[18] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, J. Wu Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions J. Clin. Med 2020 462

[19] D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, Y. Xiong, Y. Zhao, Y. Li, X. Wang, Z. Peng Clinical characteristics of 138 hospitalized patientswith 2019 novel coronavirus-infected pneumonia in Wuhan, China JAMA 2020 1061 1069

[20] WHO, Coronavirus disease 2019 (COVID-19) Situation Report 73. Available from: https://apps.who.int/iris/handle/10665/331686 (2020).

[21] J.T. Wu, K. Leung, G.M. Leung Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study The Lancet 2020 689 697

Cité par Sources :