Spectrum of the M5-traveling waves
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 66.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we study the essential spectrum of the operator obtained by linearizing at traveling waves that occur in the one-dimensional version of the M5-model for mesenchymal cell movement inside a directed tissue made up of highly aligned fibers. We show that traveling waves are spectrally unstable in L2(ℝ; ℂ3) as the essential spectrum includes the imaginary axis. Tools in the proof include exponential dichotomies and Fredholm properties. We prove that a weighted space Lw2(ℝ; ℂ3) with the same function for the tree variables of the linearized operator is no suitable to shift the essential spectrum to the left of the imaginary axis. We find a pair of appropriate weight functions whereby on the weighted space Lwα2(ℝ; ℂ2) × Lwε2(ℝ; ℂ) the essential spectrum lies on , outside the imaginary axis.
DOI : 10.1051/mmnp/2020039

Salvador Cruz-García 1

1 Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan Km 8, Col. Chimalpa, C.P 43920, Apan, Hidalgo, Mexico.
@article{MMNP_2020_15_a74,
     author = {Salvador Cruz-Garc{\'\i}a},
     title = {Spectrum of the {M5-traveling} waves},
     journal = {Mathematical modelling of natural phenomena},
     eid = {66},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020039},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020039/}
}
TY  - JOUR
AU  - Salvador Cruz-García
TI  - Spectrum of the M5-traveling waves
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020039/
DO  - 10.1051/mmnp/2020039
LA  - en
ID  - MMNP_2020_15_a74
ER  - 
%0 Journal Article
%A Salvador Cruz-García
%T Spectrum of the M5-traveling waves
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020039/
%R 10.1051/mmnp/2020039
%G en
%F MMNP_2020_15_a74
Salvador Cruz-García. Spectrum of the M5-traveling waves. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 66. doi : 10.1051/mmnp/2020039. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020039/

[1] J. Alexander, R. Gardner, C.K.R.T. Jones A topological invariant arising in the stability analysis of travelling waves J. Reine Angew. Math 1990 167 212

[2] S. Cruz-García, C. García-Reimbert On the spectral stability of standing waves of the one-dimensional M5-model Discrete Contin. Dyn. Syst. B 2016 1079 1099

[3] S. Cruz-García, C. García-Reimbert Approximations and error bounds for traveling and standing wave solutions of the one-dimensional M5-model for mesenchymal motion Bol. Soc. Mat. Mex 2020 147 169

[4] M. Egeblad, Z. Werb New functions for the matrix metalloproteinases in cancer progression Nat. Rev. Cancer 2002 161 174

[5] G. Flores, R.G. Plaza Stability of post-fertilization traveling waves J. Differ. Equ 2009 1529 1590

[6] P. Friedl, K. Wolf Tumor cell invasion and migration: diversity and escape mechanisms Nat. Rev. Cancer 2003 362 374

[7] J. Goodman Nonlinear asymptotic stability of viscous shock profiles for conservation laws Arch. Rational Mech. Anal 1986 325 344

[8] J. Goodman, Remarks on the stability of viscous shock waves. In Viscous Profiles and Numerical Methods for Shock Waves, edited by M. Shearer. SIAM, Philadelphia, PA (1991) 66–72.

[9] T. Hillen M5 mesoscopic and macroscopic models for mesenchymal motion J. Math. Biol 2006 585 616

[10] J. Humpherys, K. Zumbrun An efficient shooting algorithm for Evans function calculations in large systems Phys. D 2006 116 126

[11] J. Humpherys On the shock wave spectrum for isentropic gas dynamics with capillarity J. Differ. Equ 2009 2938 2957

[12] H.-Y. Jin, J. Li, Z.-A. Wang Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity J. Differ. Equ 2013 193 219

[13] T. Kapitula and K. Promislow, Spectral and Dynamical Stability of Nonlinear Waves. Springer, New York (2013).

[14] J.A. McDonald and R.P. Mecham, Receptors for Extracellular Matrix. Academic Press, San Diego, California (1991).

[15] K.J. Palmer Exponential dichotomies and transversal homoclinic points J. Differ. Equ 1984 225 256

[16] K.J. Palmer Exponential dichotomies and Fredholm operators Proc. Amer. Math. Soc 1988 149 156

[17] J. Rottmann-Matthes Linear stability of traveling waves in first-order hyperbolic PDEs J. Dyn. Differ. Equ 2011 365 393

[18] J. Rottmann-Matthes Stability and freezing of nonlinear waves in first-order hyperbolic PDEs J. Dyn. Differ. Equ 2012 341 367

[19] B. Sandstede, Stability of travelling waves, In Handbook of Dynamical Systems. North-, Amsterdam (2002) 983–1055.

[20] D.H. Sattinger On the stability of waves of nonlinear parabolic systems Adv. Math 1976 312 355

[21] Z.-A. Wang, T. Hillen, M. Li Mesenchymal motion models in one dimension SIAM J. Appl. Math 2008 375 397

[22] K. Wolf, I. Mazo, H. Leung, K. Engelke, U.H. Von Andrian, E.I. Deryugina, A.Y. Strongin, E.-B. Bröcker, P. Friedl Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis J. Cell Biol 2003 267 277

[23] K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier-Stokes equations, in Vol 3 of Handbook of Fluid Mechanics (2005) 311–533.

Cité par Sources :