Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2020_15_a74, author = {Salvador Cruz-Garc{\'\i}a}, title = {Spectrum of the {M5-traveling} waves}, journal = {Mathematical modelling of natural phenomena}, eid = {66}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020039}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020039/} }
Salvador Cruz-García. Spectrum of the M5-traveling waves. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 66. doi : 10.1051/mmnp/2020039. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020039/
[1] A topological invariant arising in the stability analysis of travelling waves J. Reine Angew. Math 1990 167 212
, ,[2] On the spectral stability of standing waves of the one-dimensional M5-model Discrete Contin. Dyn. Syst. B 2016 1079 1099
,[3] Approximations and error bounds for traveling and standing wave solutions of the one-dimensional M5-model for mesenchymal motion Bol. Soc. Mat. Mex 2020 147 169
,[4] New functions for the matrix metalloproteinases in cancer progression Nat. Rev. Cancer 2002 161 174
,[5] Stability of post-fertilization traveling waves J. Differ. Equ 2009 1529 1590
,[6] Tumor cell invasion and migration: diversity and escape mechanisms Nat. Rev. Cancer 2003 362 374
,[7] Nonlinear asymptotic stability of viscous shock profiles for conservation laws Arch. Rational Mech. Anal 1986 325 344
[8] J. Goodman, Remarks on the stability of viscous shock waves. In Viscous Profiles and Numerical Methods for Shock Waves, edited by M. Shearer. SIAM, Philadelphia, PA (1991) 66–72.
[9] M5 mesoscopic and macroscopic models for mesenchymal motion J. Math. Biol 2006 585 616
[10] An efficient shooting algorithm for Evans function calculations in large systems Phys. D 2006 116 126
,[11] On the shock wave spectrum for isentropic gas dynamics with capillarity J. Differ. Equ 2009 2938 2957
[12] Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity J. Differ. Equ 2013 193 219
, ,[13] T. Kapitula and K. Promislow, Spectral and Dynamical Stability of Nonlinear Waves. Springer, New York (2013).
[14] J.A. McDonald and R.P. Mecham, Receptors for Extracellular Matrix. Academic Press, San Diego, California (1991).
[15] Exponential dichotomies and transversal homoclinic points J. Differ. Equ 1984 225 256
[16] Exponential dichotomies and Fredholm operators Proc. Amer. Math. Soc 1988 149 156
[17] Linear stability of traveling waves in first-order hyperbolic PDEs J. Dyn. Differ. Equ 2011 365 393
[18] Stability and freezing of nonlinear waves in first-order hyperbolic PDEs J. Dyn. Differ. Equ 2012 341 367
[19] B. Sandstede, Stability of travelling waves, In Handbook of Dynamical Systems. North-, Amsterdam (2002) 983–1055.
[20] On the stability of waves of nonlinear parabolic systems Adv. Math 1976 312 355
[21] Mesenchymal motion models in one dimension SIAM J. Appl. Math 2008 375 397
, ,[22] Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis J. Cell Biol 2003 267 277
, , , , , , , ,[23] K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier-Stokes equations, in Vol 3 of Handbook of Fluid Mechanics (2005) 311–533.
Cité par Sources :