Voir la notice de l'article provenant de la source EDP Sciences
Nawal Kherbouche 1 ; Mohamed Helal 1 ; Abdennasser Chekroun 2 ; Abdelkader Lakmeche 1
@article{MMNP_2020_15_a75, author = {Nawal Kherbouche and Mohamed Helal and Abdennasser Chekroun and Abdelkader Lakmeche}, title = {Mathematical analysis and global dynamics for a time-delayed {Chronic} {Myeloid} {Leukemia} model with treatment}, journal = {Mathematical modelling of natural phenomena}, eid = {68}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020038}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020038/} }
TY - JOUR AU - Nawal Kherbouche AU - Mohamed Helal AU - Abdennasser Chekroun AU - Abdelkader Lakmeche TI - Mathematical analysis and global dynamics for a time-delayed Chronic Myeloid Leukemia model with treatment JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020038/ DO - 10.1051/mmnp/2020038 LA - en ID - MMNP_2020_15_a75 ER -
%0 Journal Article %A Nawal Kherbouche %A Mohamed Helal %A Abdennasser Chekroun %A Abdelkader Lakmeche %T Mathematical analysis and global dynamics for a time-delayed Chronic Myeloid Leukemia model with treatment %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020038/ %R 10.1051/mmnp/2020038 %G en %F MMNP_2020_15_a75
Nawal Kherbouche; Mohamed Helal; Abdennasser Chekroun; Abdelkader Lakmeche. Mathematical analysis and global dynamics for a time-delayed Chronic Myeloid Leukemia model with treatment. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 68. doi : 10.1051/mmnp/2020038. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020038/
[1] Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase Math. Biosci. Eng 2020 1329 1354
, ,[2] Coupled reaction-diffusion and difference system of cell-cycle dynamics for hematopoiesis process with Dirichlet boundary conditions J. Math. Anal. Appl 2019 1030 1068
, ,[3] Periodic oscillations in leukopoiesis models with two delays J. Theor. Biol 2006 288 299
, ,[4] Global dynamics of hematopoietic stem cells and differentiated cells in a chronic myeloid leukemia model J. Math. Biol 2010 975 997
,[5] Stability analysis of PDEs modelling cell dynamics in acute myeloid leukemia in 53rd IEEE Conference on Decision and Control 2014
, , , ,[6] In-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment BMC Syst. Biol 2019 1 14
,[7] Geometric stability switch criteria in delay differential systems with delay dependent parameters SIAM J. Math. Anal 2002 1144 1165
,[8] Stability analysis of a model of interaction between the immune system and cancer cells in chronic myelogenous leukemia Bull. Math. Biol 2017 1084 1110
, , , , ,[9] Long-term treatment effects in chronic myeloid leukemia J. Math. Biol 2017 733 758
, ,[10] Mathematical analysis of an age structured leukemia model Commun. Appl. Nonlinear Anal 2018 1 20
, ,[11] Stability analysis of leukemia mathematical model with delay Commun. Appl. Nonlinear Anal 2020 25 57
, , ,[12] Chemotherapeutic treatment models by drugs with instantaneous effects Commun. Appl. Nonlinear Anal 2017 1 24
, ,[13] Implication of the autologous immune system in BCR-ABL transcript variations in chronic myelogenous leukemia patients treated with imatinib Cancer Res 2015 4053 4062
, , , , , , ,[14] A mathematical model of hematopoiesis: II. cyclical neutropenia J. Theor. Biol 2005 133 146
,[15] Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity J. Clin. Invest 2011 396 409
, , , , ,[16] Successful therapy must eradicate cancer stem cells Stem Cells 2006 2603 2610
,[17] Stochastic dynamics of hematopoietic tumor stem cells Cell Cycle 2007 461 466
, ,[18] Eradication of chronic Myeloid Leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to Imatinib PLOS Comput. Biol 2009 e1000503
, , , ,[19] Persistence definitions and their connections Proc. Am. Math. Soc 1990 1025 1033
,[20] J.K. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations. Springer (1993).
[21] Existence and stability of steady states for a delay model of stem cells in leukemia under treatment Commun. Appl. Nonlinear Anal 2018 66 80
, ,[22] C.H. Jerome Paillassa, KB / iKB Hematologie Onco-hematologie. Masson (2018).
[23] Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies Leukemia 2007 926 935
, , , , , ,[24] Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells Blood 2007 4016 4019
, , , ,[25] Mathematical models for cytarabine-derived myelosuppression in acute myeloid leukaemia PLOS ONE 2019 e0204540
, , , ,[26] A PDE model for imatinib-treated chronic myelogenous leukemia Bull. Math. Biol 2008 1994 2016
, ,[27] Oscillations in a white blood cell production model with multiple differentiation stages J. Math. Biol 2019 575 600
, ,[28] Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics. Academic Press (1993).
[29] Dynamical systems properties of a mathematical model for the treatment of CML Appl. Sci 2016 291
,[30] A structured population model of clonal selection in acute leukemias with multiple maturation stages J. Math. Biol 2019 1587 1621
, ,[31] Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis Blood 1978 941 956
[32] Quantitative approaches to analyzing imatinib-treated chronic myeloid leukemia TRENDS in Pharmacolog. Sci 2007 197 198
[33] Reply: The long-term response to imatinib treatment of CML Br. J. Cancer 2007 679 680
[34] Chronic Myeloid Leukemia Blast Crisis Arises from Progenitors Stem Cells 2007 1114 1118
[35] Dynamics of chronic myeloid leukaemia Nature 2005 1267 1270
, , , , , ,[36] Nordic CML Study Group (NCMLSG). Impact of malignant stem cell burden on therapy outcome in newly diagnosed chronic myeloid leukemia patients Leukemia 2013 1520 1526
, , , , , , , , , , , , , , , , , , , ,[37] Optimal control of treatment in a mathematical model of chronic myelogenous leukemia Math. Biosci 2007 143 156
, ,[38] H.G. Othmer, F. Adler, M. Lewis and J. Dallon, Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology. Pearson (1997).
[39] Long period oscillations in a G0 model of hematopoietic stem cells SIAM J. Appl. Dyn. Syst 2005 312 332
, ,[40] Optimal control analysis of a leukemia model under imatinib treatment Math. Comput. Simul 2016 1 11
, ,[41] Stability and bifurcation in a model for the dynamics of stem-like cells in leukemia under treatment AIP Conf. Proc. 2012 758
, ,[42] An age structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia Bull. Math. Biol. 2008 602 626
, ,[43] Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications Nat. Med 2006 1181 1184
, , , , ,[44] Optimal control of acute myeloid leukaemia J. Theor. Biol 2019 30 42
, , , ,[45] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics. Springer (2011).
[46] Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse J. Roy. Soc. Interface 2014 20140079
, , ,[47] Emergence of heterogeneity in acute leukemias Biol. Direct 2016
, ,[48] Mathematical modelling of leukemogenesis and cancer stem celldynamics MMNP 2012 166 202
,[49] Selection pressure exerted by imatinib therapy leads to disparate outcomes of imatinib discontinuation trials Haematologica 2012 1553 1561
, , , , ,Cité par Sources :