Voir la notice de l'article provenant de la source EDP Sciences
Toufik Yahiaoui 1 ; Toufik Zebbiche 2 ; Abderrazak Allali 1 ; Mohamed Boun-jad 1
@article{MMNP_2020_15_a78, author = {Toufik Yahiaoui and Toufik Zebbiche and Abderrazak Allali and Mohamed Boun-jad}, title = {Gas effect for oblique and conical shock waves at high temperature}, journal = {Mathematical modelling of natural phenomena}, eid = {73}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020036}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020036/} }
TY - JOUR AU - Toufik Yahiaoui AU - Toufik Zebbiche AU - Abderrazak Allali AU - Mohamed Boun-jad TI - Gas effect for oblique and conical shock waves at high temperature JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020036/ DO - 10.1051/mmnp/2020036 LA - en ID - MMNP_2020_15_a78 ER -
%0 Journal Article %A Toufik Yahiaoui %A Toufik Zebbiche %A Abderrazak Allali %A Mohamed Boun-jad %T Gas effect for oblique and conical shock waves at high temperature %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020036/ %R 10.1051/mmnp/2020036 %G en %F MMNP_2020_15_a78
Toufik Yahiaoui; Toufik Zebbiche; Abderrazak Allali; Mohamed Boun-jad. Gas effect for oblique and conical shock waves at high temperature. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 73. doi : 10.1051/mmnp/2020036. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020036/
[1] Approximations for weak and strong oblique shock wave angles AIAA J 1994 1543 1545
[2] J.D. Anderson Jr., Hypersonic and High Temperature Gas Dynamics. McGraw-Hill Book Company, New York (1989).
[3] J. Anderson Jr., Modern Compressible Flow: With Historical Perspective. McGraw Hill Book Company, New York (1982).
[4] I. Barin, F. Sauer, R.E. Schultze and W.S. Sheng, Thermochemical Data on Pure Substances, Pt. 1, VCH Publishers, Wiesbaden, Germany (1989).
[5] Gas effect at high temperature on the supersonic nozzle conception Int. J. Aeronaut. Space Sci 2017 82 90
, ,[6] High temperature gas effect on the Prandtl-Meyer function with application for supersonic nozzle design Mech. Ind 2017 219
, ,[7] High temperature gas effect on the supersonic axisymetric minimum length Nozzle design Int. J. Eng. Tech. Res 2017 23 30
, ,[8] Numerical study of gas effect at high temperature on the supersonic plug and expansion deflexion nozzles design Int. Res. J. Eng. Technol 2017 1480 1488
, ,[9] High temperature gas effect on the normal shock wave parameters Int. J. Mech. Prod. Eng 2017 78 85
,[10] A. Burcat and B. McBride, Ideal Gas Thermodynamic Data for Compounds Used in Combustion and Air-Pollution, TAE 675, Technion Israel Institute of Technology, Haifa, Israel (1992).
[11] High-ordre Explicit Runge Kutta Formulae. Their uses, and limitations J. Inst. Math. Appl. 1975 35 55
[12] Stagnation temperature effect on the conical shock with application for air Chin. J. Aeronaut 2018 672 697
,[13] E.L. Goldsmith and J. Seddon, Intake Aerodynamics, 2nd edn. Blackwell Science (1999).
[14] W.M. Haynes, CRC Handbook of Chemistry and Physics, 93ème edn. CRC Press/Taylor and Francis, Boca Raton (2012).
[15] A. Iserles, A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press (1996).
[16] E.T. Kenneth, Computation of Thermally Perfect Properties of Oblique Shock Waves, NASA CR-4749 (1996).
[17] E.T. Kenneth, Computation of thermally perfect oblique shcok waves properties, in AIAA-97-0868, 35th Aerospace Sciences Meetingand Exhibit, Aerospace Sciences Meetings, 06–09 January (1997).
[18] Z. Kopal, Tables of Supersonic Flow Around Cones. Massachusetts Institute of Technology, Dept. of Electrical Engineering Tech. Report No. 1, Cambridge, Mass. (1947).
[19] The conical shock wave formed by a cone moving at high speed Proc. Roy. Soc. London A 1937 459 472
[20] B.J. McBride, S. Gordon and M.A. Reno, Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species, NASA TM 4513 (1993).
[21] B.J. McBride, S. Gordon and M.A. Reno, Thermodynamic data for fifty reference elements, NASA TP-3287 (1993).
[22] C.R. Peterson and P.G. Hill, Mechanics and Thermodynamics of Propulsion. Addition-Wesley Publishing Company Inc., New York, USA (1965).
[23] A. Ralston and P. Rabinowitz, A First Course in Numerical Analyses. McGraw-Hill Book Company (1985).
[24] J.L. Sims, Tables for Supersonic Flow Around Right Circular Cones at Zero Angle of Attack, NASA SP-3004 (1964).
[25] G.P. Sutton and O. Biblarz, Rocket Propulsion Elements, 8éme édition. John Wiley and Sons (2010).
[26] Stagnation temperature effect on the supersonic flow around pointed airfoils with application for air Arab. J. Sci. Eng 2019 1185 1203
, ,[27] K.E. Tatum, Computation of thermally perfect oblique shock wave properties, in 35th Aerospace Sciences Meeting and Exhibit, Reno, AIAA-97-0868 (1997).
[28] Cellular aluminum particle-air detonation based on realistic heat capacity model Combust. Sci. Technol 2020 1931 1945
[29] Numerical study on transition structures of oblique detonations with expansion wave from finite-length cowl Phys. Fluids 2020 056108
[30] Study of the features of oblique detonation induced by a finite wedge in hydrogen-air mixtures with varying equivalence ratios Fuel 2020 116854
[31] Effect of stagnation temperature on the normal shock wave Int. J. Aeronaut. Space Sci 2009 1 14
[32] Effect of stagnation temperature on supersonic flow parameters. Application for air in nozzles Aeronaut. J. 2007 31 40
,Cité par Sources :