Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2020_15_a15, author = {J. Fr\'ed\'eric Bonnans and Justina Gianatti}, title = {Optimal control techniques based on infection age for the study of the {COVID-19} epidemic}, journal = {Mathematical modelling of natural phenomena}, eid = {48}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020035}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020035/} }
TY - JOUR AU - J. Frédéric Bonnans AU - Justina Gianatti TI - Optimal control techniques based on infection age for the study of the COVID-19 epidemic JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020035/ DO - 10.1051/mmnp/2020035 LA - en ID - MMNP_2020_15_a15 ER -
%0 Journal Article %A J. Frédéric Bonnans %A Justina Gianatti %T Optimal control techniques based on infection age for the study of the COVID-19 epidemic %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020035/ %R 10.1051/mmnp/2020035 %G en %F MMNP_2020_15_a15
J. Frédéric Bonnans; Justina Gianatti. Optimal control techniques based on infection age for the study of the COVID-19 epidemic. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 48. doi : 10.1051/mmnp/2020035. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020035/
[1] Optimal control for a nonlinear age-structured population dynamics model Electron. J. Differ. Equ. 2003 28
, ,[2] J. Bonnans, D. Giorgi, V. Grélard, B. Heymann, S. Maindrault, P. Martinon, O. Tissot and J. Liu, Bocop – a collection of examples. Technical report, INRIA (2017).
[3] Optimal control of state constrained age-structured problems SIAM J. Control Optim. 2020 2206 2235
,[4] Pontryagin’s principle for control problems in age-dependent population dynamics J. Math. Biol. 1985 75 101
[5] R. Djidjou-Demasse, Y. Michalakis, M. Choisy, M.T. Sofonea and S. Alizon, Optimal COVID-19 epidemic control until vaccine deployment. Preprint MedRxiv: 20049189v2 (2020).
[6] Contact rate epidemic control of covid-19: an equilibrium view MMNP 2020 35
, ,[7] A contribution to the mathematical theory of epidemics Proc. Roy. Soc. Lond. A 1927 700 721
, ,[8] A conceptual model for the coronavirusdisease 2019 (covid-19) outbreak in Wuhan, China with individual reaction and governmental action Int. J. Infect. Dis. 2020 211 216
, , , , , , , , , ,[9] Z. Liu, P. Magal, O. Seydi and G. Webb, Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data. Preprint MedRxiv: 20034314v1 (2020).
[10] Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions Biology 2020 50
, , ,[11] Optimal control of epidemiological SEIR models with L1-objectives and control-state constraints Pac. J. Optim. 2016 415 436
,[12] Q. Richard, S. Alizon, M. Choisy, M.T. Sofonea and R. Djidjou-Demasse, Age-structured non-pharmaceutical interventions for optimal control of covid-19 epidemic. Preprint MedRxiv: 20138099v1 (2020).
[13] Optimal control of a tuberculosis model with state and control delays Math. Biosci. Eng. 2017 321 337
, ,Cité par Sources :