Optimal control techniques based on infection age for the study of the COVID-19 epidemic
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 48.

Voir la notice de l'article provenant de la source EDP Sciences

We propose a model for the COVID-19 epidemic where the population is partitioned into classes corresponding to ages (that remain constant during the epidemic). The main feature is to take into account the infection age of the infected population. This allows to better simulate the infection propagation that crucially depend on the infection age. We discuss how to estimate the coefficients from data available in the future, and introduce a confinement variable as control. The cost function is a compromise between a confinement term, the hospitalization peak and the death toll. Our numerical experiments allow to evaluate the interest of confinement varying with age classes.
DOI : 10.1051/mmnp/2020035

J. Frédéric Bonnans 1 ; Justina Gianatti 2

1 INRIA-Saclay and Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France.
2 CIFASIS-CONICET-UNR, Ocampo y Esmeralda, S2000EZP, Rosario, Argentina.
@article{MMNP_2020_15_a15,
     author = {J. Fr\'ed\'eric Bonnans and Justina Gianatti},
     title = {Optimal control techniques based on infection age for the study of the {COVID-19} epidemic},
     journal = {Mathematical modelling of natural phenomena},
     eid = {48},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020035},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020035/}
}
TY  - JOUR
AU  - J. Frédéric Bonnans
AU  - Justina Gianatti
TI  - Optimal control techniques based on infection age for the study of the COVID-19 epidemic
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020035/
DO  - 10.1051/mmnp/2020035
LA  - en
ID  - MMNP_2020_15_a15
ER  - 
%0 Journal Article
%A J. Frédéric Bonnans
%A Justina Gianatti
%T Optimal control techniques based on infection age for the study of the COVID-19 epidemic
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020035/
%R 10.1051/mmnp/2020035
%G en
%F MMNP_2020_15_a15
J. Frédéric Bonnans; Justina Gianatti. Optimal control techniques based on infection age for the study of the COVID-19 epidemic. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 48. doi : 10.1051/mmnp/2020035. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020035/

[1] B. Ainseba, S. Aniţa, M. Langlais Optimal control for a nonlinear age-structured population dynamics model Electron. J. Differ. Equ. 2003 28

[2] J. Bonnans, D. Giorgi, V. Grélard, B. Heymann, S. Maindrault, P. Martinon, O. Tissot and J. Liu, Bocop – a collection of examples. Technical report, INRIA (2017).

[3] J.F. Bonnans, J. Gianatti Optimal control of state constrained age-structured problems SIAM J. Control Optim. 2020 2206 2235

[4] M. Brokate Pontryagin’s principle for control problems in age-dependent population dynamics J. Math. Biol. 1985 75 101

[5] R. Djidjou-Demasse, Y. Michalakis, M. Choisy, M.T. Sofonea and S. Alizon, Optimal COVID-19 epidemic control until vaccine deployment. Preprint MedRxiv: 20049189v2 (2020).

[6] R. Elie, E. Hubert, G. Turinici Contact rate epidemic control of covid-19: an equilibrium view MMNP 2020 35

[7] W.O. Kermack, A.G. Mckendrick, G.T. Walker A contribution to the mathematical theory of epidemics Proc. Roy. Soc. Lond. A 1927 700 721

[8] Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S.S. Musa, M.H. Wang, Y. Cai, W. Wang, L. Yang, D. He A conceptual model for the coronavirusdisease 2019 (covid-19) outbreak in Wuhan, China with individual reaction and governmental action Int. J. Infect. Dis. 2020 211 216

[9] Z. Liu, P. Magal, O. Seydi and G. Webb, Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data. Preprint MedRxiv: 20034314v1 (2020).

[10] Z. Liu, P. Magal, O. Seydi, G. Webb Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions Biology 2020 50

[11] H. Maurer, M. Do Rosario De Pinho Optimal control of epidemiological SEIR models with L1-objectives and control-state constraints Pac. J. Optim. 2016 415 436

[12] Q. Richard, S. Alizon, M. Choisy, M.T. Sofonea and R. Djidjou-Demasse, Age-structured non-pharmaceutical interventions for optimal control of covid-19 epidemic. Preprint MedRxiv: 20138099v1 (2020).

[13] C. Silva, H. Maurer, D. Torres Optimal control of a tuberculosis model with state and control delays Math. Biosci. Eng. 2017 321 337

Cité par Sources :