Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2020_15_a77, author = {Gr\'egoire Nadin and Ana Isis Toledo Marrero}, title = {On the maximization problem for solutions of reaction{\textendash}diffusion equations with respect to their initial data}, journal = {Mathematical modelling of natural phenomena}, eid = {71}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020030}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020030/} }
TY - JOUR AU - Grégoire Nadin AU - Ana Isis Toledo Marrero TI - On the maximization problem for solutions of reaction–diffusion equations with respect to their initial data JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020030/ DO - 10.1051/mmnp/2020030 LA - en ID - MMNP_2020_15_a77 ER -
%0 Journal Article %A Grégoire Nadin %A Ana Isis Toledo Marrero %T On the maximization problem for solutions of reaction–diffusion equations with respect to their initial data %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020030/ %R 10.1051/mmnp/2020030 %G en %F MMNP_2020_15_a77
Grégoire Nadin; Ana Isis Toledo Marrero. On the maximization problem for solutions of reaction–diffusion equations with respect to their initial data. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 71. doi : 10.1051/mmnp/2020030. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020030/
[1] Mosquito population control strategies for fighting against arboviruses Math. Biosci. Eng. 2019 6274 6297
, , ,[2] Optimal releases for population replacement strategies, application to Wolbachia SIAM J. Math. Anal. 2019 3170 3194
, , ,[3] Genetic control of aedes mosquitoes Pathogens Glob. Health 2013 170 179
, , , , , ,[4] Spatial waves of advances with bistable dynamics: cytoplasmic and genetic analogues of Allee effects Am. Natural 2011 E75
,[5] establishing traveling wave in bistable reaction-diffusion system by feedback IEEE Control Syst. Lett. 2017 62 67
,[6] On the dynamics of capital accumulation across space Eur. J. Oper. Res 2008 451 465
, ,[7] Success rate of a biological invasion in terms of the spatial distribution of the founding population Bull. Math. Biol 2012 453 473
, ,[8] Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases PLoS Negl. Trop. Dis 2011 1 10
, ,[9] Variation et optimisation de formes Une analyse géométrique [A geometric Analysis] 2005
,[10] Successful establishment of Wolbachia in Aedes populations tosuppress dengue transmission Nature 2011 454 457
[11] Modeling the use of Wolbachia to control dengue fevertransmission Bull. Math. Biol 2013 796 818
,[12] Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains J. Differ. Equ 2006 541 557
[13] Linear and quasilinear equations of parabolic type 1968
, ,[14]
[15] Allee optimal control of a system in ecology Math. Models Methods Appl. Sci 2018 1665 1697
, ,[16] The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations Nature 2011 450 453
[17] Sharp transition between extinction and propagation of reaction J. Am. Math. Soc 2005 251 263
Cité par Sources :