On the maximization problem for solutions of reaction–diffusion equations with respect to their initial data
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 71.

Voir la notice de l'article provenant de la source EDP Sciences

We consider in this paper the maximization problem for the quantity ∫ Ωu(t, x)dx with respect to u0 =: u(0, ⋅), where u is the solution of a given reaction diffusion equation. This problem is motivated by biological conservation questions. We show the existence of a maximizer and derive optimality conditions through an adjoint problem. We have to face regularity issues since non-smooth initial data could give a better result than smooth ones. We then derive an algorithm enabling to approximate the maximizer and discuss some open problems.
DOI : 10.1051/mmnp/2020030

Grégoire Nadin 1 ; Ana Isis Toledo Marrero 2

1 Sorbonne Université, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France.
2 Université Paris Nord, Institut Galilée, UMR 7539, LAGA, 93430 Villetaneuse, France.
@article{MMNP_2020_15_a77,
     author = {Gr\'egoire Nadin and Ana Isis Toledo Marrero},
     title = {On the maximization problem for solutions of reaction{\textendash}diffusion equations with respect to their initial data},
     journal = {Mathematical modelling of natural phenomena},
     eid = {71},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020030},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020030/}
}
TY  - JOUR
AU  - Grégoire Nadin
AU  - Ana Isis Toledo Marrero
TI  - On the maximization problem for solutions of reaction–diffusion equations with respect to their initial data
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020030/
DO  - 10.1051/mmnp/2020030
LA  - en
ID  - MMNP_2020_15_a77
ER  - 
%0 Journal Article
%A Grégoire Nadin
%A Ana Isis Toledo Marrero
%T On the maximization problem for solutions of reaction–diffusion equations with respect to their initial data
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020030/
%R 10.1051/mmnp/2020030
%G en
%F MMNP_2020_15_a77
Grégoire Nadin; Ana Isis Toledo Marrero. On the maximization problem for solutions of reaction–diffusion equations with respect to their initial data. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 71. doi : 10.1051/mmnp/2020030. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020030/

[1] L. Almeida, M. Duprez, Y. Privat, N. Vauchelet Mosquito population control strategies for fighting against arboviruses Math. Biosci. Eng. 2019 6274 6297

[2] L. Almeida, Y. Privat, M. Strugarek, N. Vauchelet Optimal releases for population replacement strategies, application to Wolbachia SIAM J. Math. Anal. 2019 3170 3194

[3] L. Alphey, A. Mckemey, D. Nimmo, M Neira, R. Lacroix, K. Matzen, C. Beech Genetic control of aedes mosquitoes Pathogens Glob. Health 2013 170 179

[4] N. Barton, M. Turelli Spatial waves of advances with bistable dynamics: cytoplasmic and genetic analogues of Allee effects Am. Natural 2011 E75

[5] P.-A. Bliman, N. Vauchelet establishing traveling wave in bistable reaction-diffusion system by feedback IEEE Control Syst. Lett. 2017 62 67

[6] C. Camacho, B. Zou, M. Briani On the dynamics of capital accumulation across space Eur. J. Oper. Res 2008 451 465

[7] J. Garnier, L. Roques, F. Hamel Success rate of a biological invasion in terms of the spatial distribution of the founding population Bull. Math. Biol 2012 453 473

[8] A. Hancock, P. Sinkins, H. Charles Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases PLoS Negl. Trop. Dis 2011 1 10

[9] A. Henrot, M. Pierre Variation et optimisation de formes Une analyse géométrique [A geometric Analysis] 2005

[10] A. Hoffmann Successful establishment of Wolbachia in Aedes populations tosuppress dengue transmission Nature 2011 454 457

[11] H. Hughes, N. Britton Modeling the use of Wolbachia to control dengue fevertransmission Bull. Math. Biol 2013 796 818

[12] J. Húska Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains J. Differ. Equ 2006 541 557

[13] O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Uralceva Linear and quasilinear equations of parabolic type 1968

[14]

[15] E. Trelat, J. Zhu, E. Zuazua Allee optimal control of a system in ecology Math. Models Methods Appl. Sci 2018 1665 1697

[16] T. Walker The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations Nature 2011 450 453

[17] A. Zlatos Sharp transition between extinction and propagation of reaction J. Am. Math. Soc 2005 251 263

Cité par Sources :