Studying Lump solutions, Rogue wave solutions and dynamical interaction for new model generating from lax pair
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 67.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we consider the (3 + 1)-dimensional Burgers-like equation which arises in fluid mechanics, which constructed from Lax pair generating technique. The bilinear form for this model is obtained to construct the multiple-kink solutions. Lump solution, rogue wave solutions are constructed via the obtained bilinear form for this model. The physical phenomena for these solution are analyzed by studying the influence of the parameters for these solutions. The phase shifts, propagation directions and amplitudes for these solutions are controlled via these parameters. The collisions between the lump wave and the stripe soliton, which is called lumpoff solution are completely non-elastic interaction. Finally, the figures of the solutions are shown to study the dynamical behavior for the lump, rogue wave and the properties of the interaction phenomena under various parameters for (3 + 1)-dimensional Burgers-like equation. These results can’t be found in the previous scientific papers.
DOI : 10.1051/mmnp/2020029

M. K. Elboree 1

1 Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt.
@article{MMNP_2020_15_a61,
     author = {M. K. Elboree},
     title = {Studying {Lump} solutions, {Rogue} wave solutions and dynamical interaction for new model generating from lax pair},
     journal = {Mathematical modelling of natural phenomena},
     eid = {67},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020029},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020029/}
}
TY  - JOUR
AU  - M. K. Elboree
TI  - Studying Lump solutions, Rogue wave solutions and dynamical interaction for new model generating from lax pair
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020029/
DO  - 10.1051/mmnp/2020029
LA  - en
ID  - MMNP_2020_15_a61
ER  - 
%0 Journal Article
%A M. K. Elboree
%T Studying Lump solutions, Rogue wave solutions and dynamical interaction for new model generating from lax pair
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020029/
%R 10.1051/mmnp/2020029
%G en
%F MMNP_2020_15_a61
M. K. Elboree. Studying Lump solutions, Rogue wave solutions and dynamical interaction for new model generating from lax pair. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 67. doi : 10.1051/mmnp/2020029. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020029/

[1] H. Bateman Some recent researches on the motion of fluids Mon. Weather Rev 1915 163 170

[2] J.M. Burgers A mathematical model illustrating the theory of turbulence Adv. Appl. Mech 1948 171 199

[3] F. Calogero and A. Degasperis, Spectral transform and solitons. North-Holland, Amsterdam (1982).

[4] J.C. Chen, Y. Chen, B.F. Feng, K.I. Maruno Multi-dark soliton solutions of the twodimensional multi-component yajima-oikawa systems J. Phys. Soc. Jpn 2015 034002

[5] S.-S. Chen, B. Tian, Y. Sun, C.-R. Zhang Generalized Darboux Transformations, Rogue Waves, and Modulation Instability for the Coherently Coupled Nonlinear Schródinger Equations in Nonlinear Optics Ann. Phys 2019 1900011

[6] Z. Du, B. Tian, H.-P. Chai, X.-H. Zhao Dark-bright semi-rational solitons and breathers for a higher-order coupled nonlinear Schródinger system in an optical fiber Appl. Math. Lett 2020 106110

[7] X.-X. Du, B. Tian, Q.-X. Qu, Y.-Q. Yuan, X.-H. Zhao Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma Chaos Solitons Fract 2020 109709

[8] P.G. Estëvez, J. Prada Lump solutions for PDEs: algorithmic construction and classification J. Nonlinear Math. Phys 2008 166 75

[9] X.-Y. Gao Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas Appl. Math. Lett 2019 165 172

[10] C. Garrett, J. Gemmrich Rogue waves Physics Today 2009 62 63

[11] X.-Y. Gao, Y.-J. Guo, W.-R. Shan Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto- and non-auto-Bácklund transformations Appl. Math. Lett 2020 106170

[12] R. Hirota Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons Phys, Rev. Lett 1971 1192 1194

[13] R. Hirota, Direct method in soliton theory, in Solitons, edited by R.K. Bullough, P.J. Caudrey. Springer, Berlin, (1980).

[14] C.-C. Hu, B. Tian, H.-M. Yin, C.-R. Zhang, Z. Zhang Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3+1)- dimensional generalized Kadomtsev-Petviashvili equation in a fluid Comput. Math. Appl 2019 166 177

[15] L. Huang, Y. Chen Lump solutions and interaction phenomenon for (2 + 1)-dimensional Sawada-Kotera equation Theor. Phys 2017 473 478

[16] K. Imai Dromion and lump solutions of the Ishimori-I equation Progr. Theor. Phys 1997 1013 1023

[17] B.-Q. Li, Y.-L. Ma Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid Comput. Math. Appl 2018 204 214

[18] B.-Q. Li, Y.-L. Ma Solitons resonant behavior for a waveguide directional coupler system in optical fbers Opt. Quantum Electron 2018 270

[19] B.-Q. Li, Y.-L. Ma, L.-P. Mo, Y.-Y. Fu The N-loop soliton solutions for (2 + 1)-dimensional Vakhnenko equation Comput. Math. Appl 2017 504 512

[20] Z. Lu, Y. Chen Construction of rogue wave and lump solutions for nonlinear evolution equations Eur. Phys. J. B 2015 1 5

[21] Z. Lu, E.M. Tian, R. Grimshaw Interaction of two lump solitons described by the Kadomtsev-Petviashvili I equation Wave Motion 2004 123 35

[22] Y.-L. Ma Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers Nonlinear Dyn 2019 95 105

[23] Y.-L. Ma, B.-Q. Li Interactions between soliton and rogue wave for a (2+1)-dimensional generalized breaking soliton system: Hidden rogue wave and hidden soliton Comput. Math. Appl 2019 827 839

[24] Y.-L. Ma, B.-Q. Li Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation AIMS Math 2020 1162 1176

[25] Y.-L. Ma Rogue wave solutions, soliton and rogue wave mixed solution for a generalized (3 + 1)-dimensional Kadomtsev-Petviashvili equation in fluids Mod. Phys. Lett. B 2018 1850358

[26] S.V. Manakov, V.E. Zakharov Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction Phys. Lett. A 1977 205 6

[27] S. Manukure, Y. Zhou, W.X. Ma Lump solutions to a (2 + 1)-dimensional extended KP equation Comput. Math. Appl 2018 2414 2419

[28] H.E. Nistazakis, D.J. Frantzeskakis, B.A. Malomed Collisions between spatiotemporal solitons of different dimensionality in a planar waveguide Phys. Rev. E 2001 026604

[29] H.-L. Si, B.-Q. Li Two types of soliton twining behaviors for the Kraenkel-Manna-Merle system in saturated ferromagnetic materials Optik 2018 49 55

[30] H.-Q. Sun, A.-H. Chen Interactional solutions of a lump and a solitary wave for two higher-dimensional equations Nonlinear Dyn 2018 1753 1762

[31] Y. Tang, S. Tao, Q. Guan Lumpsolitons and the interaction phenomena of them for two classes of nonlinear evolution equations Comput. Math. Appl 2016 2334 2342

[32] X. Wang, Y.Q. Li, F. Huang, Y. Chen Rogue wave solitons of AB system Commun. Nonlinear Sci. Numer. Simul 2015 434 442

[33] C. Wang, Z. Dai, C. Liu Interaction between kink solitary wave and rogue wave for (2 + 1)-dimensional Burgers equation Mediterr. J. Math 2016 1087 1098

[34] M. Wang, B. Tian, Y. Sun, Z. Zhang Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear Comput. Math. Appl 2020 576 587

[35] A.M. Wazwaz Partial Differential Equations and Solitary Waves Theorem 2009

[36] A.-M. Wazwaz, S.A. El-Tantawy New (3+1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions Nonlinear Dyn 2017 2457 2461

[37] H.W. Yang, X. Chen, M. Guo, Y.D. Chen A new ZK-BO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property Nonlinear Dyn 2018 2019 2032

[38] H.-M. Yin, B. Tian, X.-C. Zhao Chaotic breathers and breather fission/fusion for a vector nonlinear Schrödinger equation in a birefringent optical fiber or wavelength division multiplexed system Appl. Math. Comput 2020 124768

[39] C.-R. Zhang, B. Tian, Q.-X. Qu, L. Liu, H.-Y. Tian Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber Z. Angew. Math. Phys 2020 18

Cité par Sources :