Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 36.

Voir la notice de l'article provenant de la source EDP Sciences

We study variants of the SEIR model for interpreting some qualitative features of the statistics of the Covid-19 epidemic in France. Standard SEIR models distinguish essentially two regimes: either the disease is controlled and the number of infected people rapidly decreases, or the disease spreads and contaminates a significant fraction of the population until herd immunity is achieved. After lockdown, at first sight it seems that social distancing is not enough to control the outbreak. We discuss here a possible explanation, namely that the lockdown is creating social heterogeneity: even if a large majority of the population complies with the lockdown rules, a small fraction of the population still has to maintain a normal or high level of social interactions, such as health workers, providers of essential services, etc. This results in an apparent high level of epidemic propagation as measured through re-estimations of the basic reproduction ratio. However, these measures are limited to averages, while variance inside the population plays an essential role on the peak and the size of the epidemic outbreak and tends to lower these two indicators. We provide theoretical and numerical results to sustain such a view.
DOI : 10.1051/mmnp/2020025

Jean Dolbeault 1 ; Gabriel Turinici 1

1 CEREMADE (CNRS UMR n° 7534), PSL university, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris 16, France.
@article{MMNP_2020_15_a11,
     author = {Jean Dolbeault and Gabriel Turinici},
     title = {Heterogeneous social interactions and the {COVID-19} lockdown outcome in a multi-group {SEIR} model},
     journal = {Mathematical modelling of natural phenomena},
     eid = {36},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020025},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020025/}
}
TY  - JOUR
AU  - Jean Dolbeault
AU  - Gabriel Turinici
TI  - Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020025/
DO  - 10.1051/mmnp/2020025
LA  - en
ID  - MMNP_2020_15_a11
ER  - 
%0 Journal Article
%A Jean Dolbeault
%A Gabriel Turinici
%T Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020025/
%R 10.1051/mmnp/2020025
%G en
%F MMNP_2020_15_a11
Jean Dolbeault; Gabriel Turinici. Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 36. doi : 10.1051/mmnp/2020025. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020025/

[1] D. Adam, P. Wu, J. Wong, E. Lau, T. Tsang, S. Cauchemez, G. Leung, B. Cowling Clustering and superspreading potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Hong Kong Res. Square 2020

[2] F.R. Adler The effects of averaging on the basic reproduction ratio Math. Biosci 1992 89 98

[3] B.M. Althouse et al., Stochasticity and heterogeneity in the transmission dynamics of SARS-CoV-2. Available from: https://covid.idmod.org/ (2020).

[4] R.M. Anderson, B. Anderson and R.M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, Oxford (1992).

[5] N. Bacaër Un modèle mathématique des débuts de l'épidémie de coronavirus en France MMNP 2020 29

[6] J.C. Blackwood, L.M. Childs An introduction to compartmental modeling for the budding infectious disease modeler Lett. Biomath 2018 195 221

[7] B. Buonomo, A. D' Onofrio, D. Lacitignola Global stability of an SIR epidemic model with information dependent vaccination Math. Biosci 2008 9 16

[8] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth On the Lambert W function Adv. Comput. Math 1996 329 359

[9] A. Danchin, T.W.P. Ng and G. Turinici, A new transmission route for the propagation of the SARS-CoV-2 coronavirus. Preprint medRxiv 20022939v1 (2020).

[10] G. Di Domenico, L. Pullano, C.E. Sabbatini, P.-Y. Boëlle and V. Colizza, Expected impact of lockdown in Île-de-France and possible exit strategies. Available from: https://www.epicx-lab.com (2020).

[11] O. Diekmann and J.A.P. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, vol. 5. John Wiley Sons, New Jersey (2000).

[12] O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382

[13] O. Diekmann, J.A.P. Heesterbeek, M.G. Roberts The construction of next-generation matrices for compartmental epidemic models J. R. Soc. Interface 2009 873 885

[14] A. Endo, S. Abbott, A.J. Kucharski, S. Funk Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China Wellcome Open Res 2020 67

[15] Z. Feng Final and peak epidemic sizes for SEIR models with quarantine and isolation Math. Biosci. Eng 2007 675

[16] A. Gerasimov, G. Lebedev, M. Lebedev and I. Semenycheva, Reaching collective immunity for COVID-19: an estimate with a heterogeneous model based on the data for Italy. Preprint medRxiv 20112045v1 (2020).

[17] M.G.M. Gomes, R.M. Corder, J.G. King, K.E. Langwig, C. Souto-Maior, J. Carneiro, G. Goncalves, C. Penha-Goncalves, M.U. Ferreira and R. Aguas, Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold. Preprint medRxiv 20081893v1 (2020).

[18] Q. Griette, P. Magal and O. Seydi, Unreported cases for age dependent COVID-19 outbreak in Japan. Preprint medRxiv 20093807v1 (2020).

[19] G. Grossmann, M. Backenkoehler and V. Wolf, Importance of interaction structure and stochasticity for epidemic spreading: A COVID-19 case study. Preprint medRxiv 20091736v1 (2020).

[20] L. Hébert-Dufresne, B.M. Althouse, S.V. Scarpino and A. Allard, Beyond R0: Heterogeneity in secondary infections and probabilistic epidemic forecasting. Preprint medRxiv 20021725v1 (2020).

[21] H.W. Hethcote, Modeling heterogeneous mixing in infectious disease dynamics, in Models for infectious human diseases: their structure and relation to data. Cambridge University Press, Cambridge (1996) 215–238.

[22] H.W. Hethcote The mathematics of infectious diseases SIAM Rev 2000 599 653

[23] H.W. Hethcote, J.W. Van Ark Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs Math. Biosci 1987 85 118

[24] J.M. Hyman, E. Stanley Using mathematical models to understand the aids epidemic Math. Biosci 1988 415 473

[25] J.A. Jacquez, C.P. Simon, J. Koopman, L. Sattenspiel, T. Perry Modeling and analyzing HIV transmission: the effect of contact patterns Math. Biosci 1988 119 199

[26] W.O. Kermack, A.G. Mckendrick A contribution to the mathematical theory of epidemics Proc. R. Soc. Lond., Ser. A 1927 700 721

[27] A.J. Kucharski, P. Klepac, A. Conlan, S.M. Kissler, M. Tang, H. Fry, J. Gog and J. Edmunds, Effectiveness of isolation, testing, contact tracing and physical distancing on reducing transmission of SARS-CoV-2 in different settings. Preprint medRxiv 20077024v1 (2020).

[28] M. Lachiany, Y. Louzoun Effects of distribution of infection rate on epidemic models Phys. Rev. E 2016

[29] L. Laguzet, G. Turinici Individual Vaccination as Nash Equilibrium in a SIR Model with Application to the 2009–2010 Influenza A (H1N1) Epidemic in France Bull. Math. Biol 2015 1955 1984

[30] L. Landau and E. Lifshitz, Statistical Physics, 3rd edn. Vol. 5. Elsevier Science, Amsterdam (1980).

[31] X. Lin, Analysis of 25, 000 lab-confirmed Covid-19 cases in Wuhan: Epidemiological characteristics and non-pharmaceutical intervention effects. Department of Biostatistics and Department of Statistics, Harvard University and Broad Institute. Available from: https://cdn1.sph.harvard.edu/wp-content/uploads/sites/21/2020/03/COVID-19-03-16-2020-Lin.pdf (2020).

[32] Z. Liu, P. Magal, O. Seydi, G. Webb A covid-19 epidemic model with latency period Infect. Dis. Model 2020 323 337

[33] Z. Liu, P. Magal, O. Seydi, G. Webb Predicting the cumulative number of cases for the Covid-19 epidemic in China from early data Math. Biosc. Eng 2020 3040 3051

[34] Z. Liu, P. Magal, O. Seydi, G. Webb Understanding unreported cases in the Covid-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions Biology 2020 50

[35] P. Magaland G. Webb, Predicting the number of reported and unreported cases for the Covid-19 epidemic in South Korea, Italy, France and Germany. Preprint medRxiv 20040154v1 (2020).

[36] M. Martcheva, An introduction to mathematical epidemiology, Vol. 61 of Texts in Applied Mathematics. Springer, New York (2015).

[37] R.M. May, R.M. Anderson Spatial heterogeneity and the design of immunization programs Math. Biosci 1984 83 111

[38] K. Prem, Y. Liu, T.W. Russell, A.J. Kucharski, R.M. Eggo, N. Davies, M. Jit, P. Klepac, S. Flasche, S. Clifford The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study Lancet Public Health 2020 e261 e270

[39] J. Riou, C.L. Althaus Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020 Euro Surveill. 2020 2000058

[40] L. Roques, E.K. Klein, J. Papaïx, A. Sar, S. Soubeyrand Impact of lockdown on the epidemic dynamics of COVID-19 in France Front. Med 2020 274

[41] J. Roux, C. Massonnaud and P. Crépey, Covid-19: One-month impact of the french lockdown on the epidemic burden. Publications de l'équipe REPERES (Recherche en Pharmaco-épidémiologie et recours aux soins, UPRES EA-7449). Available from: https://www.ea-reperes.com/wp-content/uploads/2020/04/ImpactConfinement-EHESP-20200322v1.pdf (2020).

[42] H. Salje, C. Tran Kiem, N. Lefrancq, N. Courtejoie, P. Bosetti, J. Paireau, A. Andronico, N. Hozé, J. Richet, C.-L. Dubost Estimating the burden of SARS-CoV-2 in France Science 2020 eabc3517

[43] Santé Publique France French national public health agency. 2020

[44] H. Stanley, Introduction to Phase Transitions and Critical Phenomena, The International Series of Monographs on Physics. Oxford, Oxford University Press Inc. (1971).

[45] P. Van Den Driessche, J. Watmough Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci 2002 29 48

Cité par Sources :