Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2020_15_a11, author = {Jean Dolbeault and Gabriel Turinici}, title = {Heterogeneous social interactions and the {COVID-19} lockdown outcome in a multi-group {SEIR} model}, journal = {Mathematical modelling of natural phenomena}, eid = {36}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020025}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020025/} }
TY - JOUR AU - Jean Dolbeault AU - Gabriel Turinici TI - Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020025/ DO - 10.1051/mmnp/2020025 LA - en ID - MMNP_2020_15_a11 ER -
%0 Journal Article %A Jean Dolbeault %A Gabriel Turinici %T Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020025/ %R 10.1051/mmnp/2020025 %G en %F MMNP_2020_15_a11
Jean Dolbeault; Gabriel Turinici. Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 36. doi : 10.1051/mmnp/2020025. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020025/
[1] Clustering and superspreading potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Hong Kong Res. Square 2020
, , , , , , ,[2] The effects of averaging on the basic reproduction ratio Math. Biosci 1992 89 98
[3] B.M. Althouse et al., Stochasticity and heterogeneity in the transmission dynamics of SARS-CoV-2. Available from: https://covid.idmod.org/ (2020).
[4] R.M. Anderson, B. Anderson and R.M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, Oxford (1992).
[5] Un modèle mathématique des débuts de l'épidémie de coronavirus en France MMNP 2020 29
[6] An introduction to compartmental modeling for the budding infectious disease modeler Lett. Biomath 2018 195 221
,[7] Global stability of an SIR epidemic model with information dependent vaccination Math. Biosci 2008 9 16
, ,[8] On the Lambert W function Adv. Comput. Math 1996 329 359
, , , ,[9] A. Danchin, T.W.P. Ng and G. Turinici, A new transmission route for the propagation of the SARS-CoV-2 coronavirus. Preprint medRxiv 20022939v1 (2020).
[10] G. Di Domenico, L. Pullano, C.E. Sabbatini, P.-Y. Boëlle and V. Colizza, Expected impact of lockdown in Île-de-France and possible exit strategies. Available from: https://www.epicx-lab.com (2020).
[11] O. Diekmann and J.A.P. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, vol. 5. John Wiley Sons, New Jersey (2000).
[12] On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382
, ,[13] The construction of next-generation matrices for compartmental epidemic models J. R. Soc. Interface 2009 873 885
, ,[14] Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China Wellcome Open Res 2020 67
, , ,[15] Final and peak epidemic sizes for SEIR models with quarantine and isolation Math. Biosci. Eng 2007 675
[16] A. Gerasimov, G. Lebedev, M. Lebedev and I. Semenycheva, Reaching collective immunity for COVID-19: an estimate with a heterogeneous model based on the data for Italy. Preprint medRxiv 20112045v1 (2020).
[17] M.G.M. Gomes, R.M. Corder, J.G. King, K.E. Langwig, C. Souto-Maior, J. Carneiro, G. Goncalves, C. Penha-Goncalves, M.U. Ferreira and R. Aguas, Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold. Preprint medRxiv 20081893v1 (2020).
[18] Q. Griette, P. Magal and O. Seydi, Unreported cases for age dependent COVID-19 outbreak in Japan. Preprint medRxiv 20093807v1 (2020).
[19] G. Grossmann, M. Backenkoehler and V. Wolf, Importance of interaction structure and stochasticity for epidemic spreading: A COVID-19 case study. Preprint medRxiv 20091736v1 (2020).
[20] L. Hébert-Dufresne, B.M. Althouse, S.V. Scarpino and A. Allard, Beyond R0: Heterogeneity in secondary infections and probabilistic epidemic forecasting. Preprint medRxiv 20021725v1 (2020).
[21] H.W. Hethcote, Modeling heterogeneous mixing in infectious disease dynamics, in Models for infectious human diseases: their structure and relation to data. Cambridge University Press, Cambridge (1996) 215–238.
[22] The mathematics of infectious diseases SIAM Rev 2000 599 653
[23] Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs Math. Biosci 1987 85 118
,[24] Using mathematical models to understand the aids epidemic Math. Biosci 1988 415 473
,[25] Modeling and analyzing HIV transmission: the effect of contact patterns Math. Biosci 1988 119 199
, , , ,[26] A contribution to the mathematical theory of epidemics Proc. R. Soc. Lond., Ser. A 1927 700 721
,[27] A.J. Kucharski, P. Klepac, A. Conlan, S.M. Kissler, M. Tang, H. Fry, J. Gog and J. Edmunds, Effectiveness of isolation, testing, contact tracing and physical distancing on reducing transmission of SARS-CoV-2 in different settings. Preprint medRxiv 20077024v1 (2020).
[28] Effects of distribution of infection rate on epidemic models Phys. Rev. E 2016
,[29] Individual Vaccination as Nash Equilibrium in a SIR Model with Application to the 2009–2010 Influenza A (H1N1) Epidemic in France Bull. Math. Biol 2015 1955 1984
,[30] L. Landau and E. Lifshitz, Statistical Physics, 3rd edn. Vol. 5. Elsevier Science, Amsterdam (1980).
[31] X. Lin, Analysis of 25, 000 lab-confirmed Covid-19 cases in Wuhan: Epidemiological characteristics and non-pharmaceutical intervention effects. Department of Biostatistics and Department of Statistics, Harvard University and Broad Institute. Available from: https://cdn1.sph.harvard.edu/wp-content/uploads/sites/21/2020/03/COVID-19-03-16-2020-Lin.pdf (2020).
[32] A covid-19 epidemic model with latency period Infect. Dis. Model 2020 323 337
, , ,[33] Predicting the cumulative number of cases for the Covid-19 epidemic in China from early data Math. Biosc. Eng 2020 3040 3051
, , ,[34] Understanding unreported cases in the Covid-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions Biology 2020 50
, , ,[35] P. Magaland G. Webb, Predicting the number of reported and unreported cases for the Covid-19 epidemic in South Korea, Italy, France and Germany. Preprint medRxiv 20040154v1 (2020).
[36] M. Martcheva, An introduction to mathematical epidemiology, Vol. 61 of Texts in Applied Mathematics. Springer, New York (2015).
[37] Spatial heterogeneity and the design of immunization programs Math. Biosci 1984 83 111
,[38] The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study Lancet Public Health 2020 e261 e270
, , , , , , , , ,[39] Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020 Euro Surveill. 2020 2000058
,[40] Impact of lockdown on the epidemic dynamics of COVID-19 in France Front. Med 2020 274
, , , ,[41] J. Roux, C. Massonnaud and P. Crépey, Covid-19: One-month impact of the french lockdown on the epidemic burden. Publications de l'équipe REPERES (Recherche en Pharmaco-épidémiologie et recours aux soins, UPRES EA-7449). Available from: https://www.ea-reperes.com/wp-content/uploads/2020/04/ImpactConfinement-EHESP-20200322v1.pdf (2020).
[42] Estimating the burden of SARS-CoV-2 in France Science 2020 eabc3517
, , , , , , , , ,[43] Santé Publique France French national public health agency. 2020
[44] H. Stanley, Introduction to Phase Transitions and Critical Phenomena, The International Series of Monographs on Physics. Oxford, Oxford University Press Inc. (1971).
[45] Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci 2002 29 48
,Cité par Sources :