Active control of an improved Boussinesq system
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 58.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, optimal control of excessive water waves in a canal system, modeled by a nonlinear improved Boussinesq equation, is considered. For this aim, well-posedness and controllability properties of the system is investigated. Suppressing of the waves in the canal system is successfully obtained by means of optimally determining of canal depth control function via maximum principle, which transforms to optimal control problem to solving an nonlinear initial-boundary-terminal value problem. The beauty of the present paper than other studies existing in the literature is that optimal canal depth control function is analytically obtained without linearization of nonlinear term. In order to show effectiveness and robustness of the control actuation, several numerical examples are given by MATLAB in tables and graphical forms.
DOI : 10.1051/mmnp/2020024

Kenan Yildirim 1

1 Mus Alparslan University, Mus, Turkey.
@article{MMNP_2020_15_a70,
     author = {Kenan Yildirim},
     title = {Active control of an improved {Boussinesq} system},
     journal = {Mathematical modelling of natural phenomena},
     eid = {58},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020024},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020024/}
}
TY  - JOUR
AU  - Kenan Yildirim
TI  - Active control of an improved Boussinesq system
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020024/
DO  - 10.1051/mmnp/2020024
LA  - en
ID  - MMNP_2020_15_a70
ER  - 
%0 Journal Article
%A Kenan Yildirim
%T Active control of an improved Boussinesq system
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020024/
%R 10.1051/mmnp/2020024
%G en
%F MMNP_2020_15_a70
Kenan Yildirim. Active control of an improved Boussinesq system. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 58. doi : 10.1051/mmnp/2020024. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020024/

[1] D. Adhikari, C. Cao, J. Wu, X. Xu Small global solutions to the damped two-dimensional Boussinesq equations J. Differ. Equ 2014 3594 3613

[2] A. Ali, B.-S. Juliussen, H. Kalisch Approximate conservation laws for an integrable Boussinesq system MMNP 2017 1 14

[3] K. Allali, F. Bikany, A. Taik, V. Volpert Influence of vibrations on convective instability of reaction fronts in liquids MMNP 2010 35 41

[4] E.A. Barnes Necessary and sufficient optimality conditions for a class of distributed parameter control systems SIAM J. Control 1971 62 82

[5] J. Boussinesq Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond J. Math. Pures Appl 1872 55 108

[6] W. Chen, A. Sarria Damped infinite energy solutions of the 3D Euler and Boussinesq equations J. Differ. Equ 2018 3841 3857

[7] A. Esfahani, L.G. Farah Local well-posedness for the sixth-order Boussinesq equation J. Math. Anal. Appl 2012 230 242

[8] J. Fan, T. Ozawa Cauchy problem and vanishing dispersion limit for Schrödinger-improved Boussinesq equations Nonlinear Anal 2020 1 7

[9] D.-A. Geba, E. Witz Improved global well-posedness for defocusing sixth-order Boussinesq equations Nonlinear Anal 2020 1 16

[10] G.W. Griffiths and W.E. Schiesser, Traveling Wave Analysis of Partial Differential Equations, Academic Press, Cambridge (2011).

[11] S. Guo, Y. Yang High energy blow up for two-dimensional generalizedexponential-type Boussinesq equation Nonlinear Anal 2020 1 10

[12] N.S. Koshlyakov, M.M. Smirnov and E.B. Gliner, Differential Equation of Mathematical Physics. Elsevier, North-Holland Amsterdam (1964).

[13] H.-C. Lee, Y. Choi Analysis and approximation of linear feedback control problems for the Boussinesq equations Comp. Math. Appl 2006 829 848

[14] S. Li Optimal controls of Boussinesq equations with state constraints Nonlinear Anal 2005 1485 1508

[15] X. Li, W. Sun, Y. Xing, C.-S. Chou Energy conserving local discontinious Galerkin methods for the improved Boussinesq equation J. Comp. Phys 2020 1 25

[16] H. Liu, H. Gao Global well-posedness and long time decay of the 3D Boussinesq equations Int. J. Sys. Sci 2017 8649 8665

[17] H. Liu, H. Xiao Boundary feedback stabilization of Boussinesq equations Acta Math. Sci 2018 1881 1902

[18] G. Liu, W. Wang Inviscid limit for the damped Boussinesq equation J. Differ. Equ 2019 5521 5542

[19] V.G. Makhankov and O.K. Pashaev, Nonlinear Evolution Equations and Dynamical Systems: Needs’90, Springer-Verlag, Berlin (1991).

[20] M. Pedersen, Functional Analysis in Applied Mathematics and Engineering. CRC Press, Cleveland, (2018).

[21] I. Sadek Necessary and Sufficient Conditions for the Optimal Control of Distributed Parameter Systems Subject to Integral Constraints J. Franklin Inst 1988 565 583

[22] G. Schneider, C.W. Eugene Kawahara dynamics in dispersive media Physica D 2001 384 394

[23] V.B. Shakhmurov Nonlocal problems for Boussinesq equations Nonlinear Anal 2016 134 151

[24] M.D. Todorov, Nonlinear Waves. Morgan-Claypool, San Rafael, California (2018).

[25] V.V. Varlamov On the initial boundary value problem for the damped Boussinesq equation Dis. Con. Dyn. Sys 1998 431 444

[26] V.N. Vu, C. Lee, T.-H. Jung Extended Boussinesq equations for waves in porous media Coastal Eng 2018 85 97

[27] G. Wang, Z. Sun, J. Gao, X. Ma Numerical study of edge waves using extended Boussinesq equations Water Sci. Eng 2017 295 302

[28] A.M. Wazwaz Gaussian solitary waves for the logarithmic Boussinesq equation and the logarithmic regularized Boussinesq equation Ocean Eng 2015 111 115

[29] Z. Yang Longtime dynamics of the damped Boussinesq equation J. Math. Anal. Appl 2013 180 190

[30] E.C. Zachmaonoglou and D.W. Thoe, Intoduction to Partial Differential equations with applications. Dover Publication, New York (1986).

[31] H. Zhang, X. Jiang, M. Zhao, R. Zheng Spectral method for solving the time fractional Boussinesq equation Appl. Math. Lett 2018 164 170

Cité par Sources :