Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2020_15_a58, author = {Fabio Bagagiolo and Marta Zoppello}, title = {Hysteresis and controllability of affine driftless systems: some case studies}, journal = {Mathematical modelling of natural phenomena}, eid = {55}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020023}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020023/} }
TY - JOUR AU - Fabio Bagagiolo AU - Marta Zoppello TI - Hysteresis and controllability of affine driftless systems: some case studies JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020023/ DO - 10.1051/mmnp/2020023 LA - en ID - MMNP_2020_15_a58 ER -
%0 Journal Article %A Fabio Bagagiolo %A Marta Zoppello %T Hysteresis and controllability of affine driftless systems: some case studies %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020023/ %R 10.1051/mmnp/2020023 %G en %F MMNP_2020_15_a58
Fabio Bagagiolo; Marta Zoppello. Hysteresis and controllability of affine driftless systems: some case studies. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 55. doi : 10.1051/mmnp/2020023. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020023/
[1] A. Agrachev, U. Boscain and D. Barilari, Introduction to Riemannian and Sub-Riemannian geometry, https://www.imj-prg.fr/~davide.barilari/ABB-v2.pdf (2019).
[2] Can magnetic multilayers propel artificial micro-swimmers mimicking, sperm cells Soft Robot 2015 117 128
, , ,[3] Purcell magneto-elastic swimmer controlled by an external magnetic field IFAC PapersOnLine 2017 4120 4125
, , ,[4] An infinite horizon optimal control problem for some switching systems Discr. Contin. Dyn. Syst. Ser. B 2001 443 462
[5] On the controllability of the semilinear heat equation with hysteresis Physica B 2012 1401 1403
[6] Hybrid thermostatic approximations of junctions for some optimal control problems on networks SIAM J. Control Optim 2019 2415 2442
,[7] Hysteresis in filtration through porous media Z. Anal. Anwendungen 2000 977 997
,[8] Game theoretic decentralized feedback controls in Markov jump processes J. Optim. Theory Appl 2017 704 726
, , ,[9] Swimming by switching Meccanica 2017 3499 3511
, ,[10] Impulsive control of Lagrangian systems and locomotion in fluids Discr. Contin. Dyn. Syst 2008 1 35
[11] Weak differentiability of scalar hysteresis operators Discr. Contin. Dyn. Syst 2015 2405 2421
,[12] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer-Verlag, New York (1996).
[13] Discontinuities and hysteresis in quantized average consensus Automatica 2011 1916 1928
, ,[14] Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung Math. Ann 1939 98 105
[15] Necessary and sufficient stability conditions for equilibria of linear SISO feedbacks with a play operator IFAC PapersOnLine 2016 211 216
, , ,[16] Optimal control of the sweeping process Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 2012 117 159
, , ,[17] J.M. Coron, Control and Nonlinearity. AMS, Providence (2007).
[18] Correction to: Control and controllability of PDEs with hysteresis Appl. Math. Optim. 2020
,[19] A macroeconomic model with hysteresis in foreign trade Metroeconomica 2001 449 473
[20] BV-norm continuity of sweeping processes driven by a set with constant shape J. Differ. Equ 2016 5875 5899
,[21] M. Krasnosel’skiǐ and A. Pokrovskiǐ, Systems with Hysteresis. Springer-Verlag, Berlin (1989).
[22] Generalized variational inequalities J. Convex Anal 2002 159 183
,[23] J.P. Laumond, S. Sekhavat and F. Lamiraux, Guidelines in nonholonomic motion planning formobile robots, in Robot Motion Planning and Control, edited by J.-P. Laumond. Vol. 229 of Lecture Notes in Information and Control Sciences. Springer, Berlin (1998).
[24] D. Liberzon, Switching in Systems and Control. Birkhäuser, Boston (2003).
[25] Integral control of infinite-dimensional systems in presence of hysteresis: an input-output approach ESAIM: COCV 2007 458 483
, ,[26] I.D. Mayergoyz, Mathematical Models of Hysteresis. Springer-Verlag, New York (1991).
[27] R. Montgomery, Nonholonomic motion planning and Gauge theory, in Nonholonomic Motion Planning, edited by Z. Li, J.F. Canny. Vol. 192 of The Springer International Series in Engineering and Computer Science (Robotics: Vision, Manipulation and Sensors). Springer, Boston (1993) 343–377.
[28] Evolution problem associated with a moving convex set in a Hilbert space J. Differ. Equ 1977 347 374
[29] On a class of scalar variational inequalities with measure data Appl. Anal 2009 1739 1753
[30] BV solutions of rate independent variational inequalities Ann. Sc. Norm. Super. Pisa Cl. Sci 2011 269 315
[31] Stability analysis and stabilization of systems with input backlash IEEE Trans. Automat. Contr 2014 488 494
, ,[32] A. Visintin, Differential Models of Hysteresis. Springer-Verlag, Berlin (1994).
Cité par Sources :