Hysteresis and controllability of affine driftless systems: some case studies
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 55.

Voir la notice de l'article provenant de la source EDP Sciences

We investigate the controllability of some kinds of driftless affine systems where hysteresis effects are taken into account, both in the realization of the control and in the state evolution. In particular we consider two cases: the one when hysteresis is represented by the so-called play operator, and the one when it is represented by a so-called delayed relay. In the first case we prove that, under some hypotheses, whenever the corresponding non-hysteretic system is controllable, then we can also, at least approximately, control the hysteretic one. This is obtained by some suitably constructed approximations for the inputs in the hysteresis operator. In the second case we prove controllability for a generic hysteretic delayed switching system. Finally, we investigate some possible connections between the two cases.
DOI : 10.1051/mmnp/2020023

Fabio Bagagiolo 1 ; Marta Zoppello 2

1 Dipartimento di Matematica, Università degli studi di Trento via Sommarive, 14 38123 Povo, Trento, Italy.
2 Politecnico di Torino, Corso Duca degli Abruzzi, 24 10129 Torino, Italy.
@article{MMNP_2020_15_a58,
     author = {Fabio Bagagiolo and Marta Zoppello},
     title = {Hysteresis and controllability of affine driftless systems: some case studies},
     journal = {Mathematical modelling of natural phenomena},
     eid = {55},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020023/}
}
TY  - JOUR
AU  - Fabio Bagagiolo
AU  - Marta Zoppello
TI  - Hysteresis and controllability of affine driftless systems: some case studies
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020023/
DO  - 10.1051/mmnp/2020023
LA  - en
ID  - MMNP_2020_15_a58
ER  - 
%0 Journal Article
%A Fabio Bagagiolo
%A Marta Zoppello
%T Hysteresis and controllability of affine driftless systems: some case studies
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020023/
%R 10.1051/mmnp/2020023
%G en
%F MMNP_2020_15_a58
Fabio Bagagiolo; Marta Zoppello. Hysteresis and controllability of affine driftless systems: some case studies. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 55. doi : 10.1051/mmnp/2020023. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020023/

[1] A. Agrachev, U. Boscain and D. Barilari, Introduction to Riemannian and Sub-Riemannian geometry, https://www.imj-prg.fr/~davide.barilari/ABB-v2.pdf (2019).

[2] F. Alouges, A. Desimone, L. Giraldi, M. Zoppello Can magnetic multilayers propel artificial micro-swimmers mimicking, sperm cells Soft Robot 2015 117 128

[3] F. Alouges, A. Desimone, L. Giraldi, M. Zoppello Purcell magneto-elastic swimmer controlled by an external magnetic field IFAC PapersOnLine 2017 4120 4125

[4] F. Bagagiolo An infinite horizon optimal control problem for some switching systems Discr. Contin. Dyn. Syst. Ser. B 2001 443 462

[5] F. Bagagiolo On the controllability of the semilinear heat equation with hysteresis Physica B 2012 1401 1403

[6] F. Bagagiolo, R. Maggistro Hybrid thermostatic approximations of junctions for some optimal control problems on networks SIAM J. Control Optim 2019 2415 2442

[7] F. Bagagiolo, A. Visintin Hysteresis in filtration through porous media Z. Anal. Anwendungen 2000 977 997

[8] F. Bagagiolo, D. Bauso, R. Maggistro, M. Zoppello Game theoretic decentralized feedback controls in Markov jump processes J. Optim. Theory Appl 2017 704 726

[9] F. Bagagiolo, R. Maggistro, M. Zoppello Swimming by switching Meccanica 2017 3499 3511

[10] A. Bressan Impulsive control of Lagrangian systems and locomotion in fluids Discr. Contin. Dyn. Syst 2008 1 35

[11] M. Brokate, P. Krejči Weak differentiability of scalar hysteresis operators Discr. Contin. Dyn. Syst 2015 2405 2421

[12] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer-Verlag, New York (1996).

[13] F. Ceragioli, C. De Persis, P. Frasca Discontinuities and hysteresis in quantized average consensus Automatica 2011 1916 1928

[14] W.L. Chow Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung Math. Ann 1939 98 105

[15] M. Cocetti, L. Zaccarian, F. Bagagiolo, E. Bertolazzi Necessary and sufficient stability conditions for equilibria of linear SISO feedbacks with a play operator IFAC PapersOnLine 2016 211 216

[16] Colombo G. Colombo, R. Henrion, N.D. Hoang, B.S. Mordukhovich Optimal control of the sweeping process Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 2012 117 159

[17] J.M. Coron, Control and Nonlinearity. AMS, Providence (2007).

[18] C. Gavioli, P. Krejčí Correction to: Control and controllability of PDEs with hysteresis Appl. Math. Optim. 2020

[19] M. Gocke A macroeconomic model with hysteresis in foreign trade Metroeconomica 2001 449 473

[20] J. Kopfova, V. Recupero BV-norm continuity of sweeping processes driven by a set with constant shape J. Differ. Equ 2016 5875 5899

[21] M. Krasnosel’skiǐ and A. Pokrovskiǐ, Systems with Hysteresis. Springer-Verlag, Berlin (1989).

[22] P. Krejčí, P. Laurençot Generalized variational inequalities J. Convex Anal 2002 159 183

[23] J.P. Laumond, S. Sekhavat and F. Lamiraux, Guidelines in nonholonomic motion planning formobile robots, in Robot Motion Planning and Control, edited by J.-P. Laumond. Vol. 229 of Lecture Notes in Information and Control Sciences. Springer, Berlin (1998).

[24] D. Liberzon, Switching in Systems and Control. Birkhäuser, Boston (2003).

[25] H. Logemann, E.P. Ryan, I. Shvartsman Integral control of infinite-dimensional systems in presence of hysteresis: an input-output approach ESAIM: COCV 2007 458 483

[26] I.D. Mayergoyz, Mathematical Models of Hysteresis. Springer-Verlag, New York (1991).

[27] R. Montgomery, Nonholonomic motion planning and Gauge theory, in Nonholonomic Motion Planning, edited by Z. Li, J.F. Canny. Vol. 192 of The Springer International Series in Engineering and Computer Science (Robotics: Vision, Manipulation and Sensors). Springer, Boston (1993) 343–377.

[28] J.J. Moreau Evolution problem associated with a moving convex set in a Hilbert space J. Differ. Equ 1977 347 374

[29] V. Recupero On a class of scalar variational inequalities with measure data Appl. Anal 2009 1739 1753

[30] V. Recupero BV solutions of rate independent variational inequalities Ann. Sc. Norm. Super. Pisa Cl. Sci 2011 269 315

[31] S. Tarbouriech, I. Queinnec, C. Prieur Stability analysis and stabilization of systems with input backlash IEEE Trans. Automat. Contr 2014 488 494

[32] A. Visintin, Differential Models of Hysteresis. Springer-Verlag, Berlin (1994).

Cité par Sources :