Voir la notice de l'article provenant de la source EDP Sciences
Romuald Elie 1 ; Emma Hubert 1 ; Gabriel Turinici 2
@article{MMNP_2020_15_a10, author = {Romuald Elie and Emma Hubert and Gabriel Turinici}, title = {Contact rate epidemic control of {COVID-19:} an equilibrium view}, journal = {Mathematical modelling of natural phenomena}, eid = {35}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020022/} }
TY - JOUR AU - Romuald Elie AU - Emma Hubert AU - Gabriel Turinici TI - Contact rate epidemic control of COVID-19: an equilibrium view JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020022/ DO - 10.1051/mmnp/2020022 LA - en ID - MMNP_2020_15_a10 ER -
%0 Journal Article %A Romuald Elie %A Emma Hubert %A Gabriel Turinici %T Contact rate epidemic control of COVID-19: an equilibrium view %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020022/ %R 10.1051/mmnp/2020022 %G en %F MMNP_2020_15_a10
Romuald Elie; Emma Hubert; Gabriel Turinici. Contact rate epidemic control of COVID-19: an equilibrium view. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 35. doi : 10.1051/mmnp/2020022. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020022/
[1] An optimal isolation policy for an epidemic J. Appl. Prob 1973 247 262
[2] Optimal immunisation policies for epidemics Adv. Appl. Prob 1974 494 511
[3] Mean field type control with congestion Appl. Math. Optim 2016 393 418
,[4] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, 2nd edn. Birkhäuser, Basel (2008).
[5] Disability-adjusted life years: a critical review J. Health Eco 1997 685 702
,[6] R.M. Anderson and R.M. May, Infectious Diseases of Humans Dynamics and Control. Oxford University Press, Oxford (1992).
[7] R.M. Anderson, T.D. Hollingsworth and D.J. Nokes, Mathematical models of transmission and control, Vol. 2. Oxford University Press, Oxford (2009).
[8] Un modéle mathématique des débuts de l’épidémie de coronavirus en France MMNP 2020 29
[9] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems Control: Foundations Applications. Birkhäuser Boston Inc., Boston, MA (1997).
[10] Vaccination and the theory of games Proc. Natl. Acad. Sci. USA 2004 13391 13394
,[11] Optimal control of deterministic epidemics Optim. Control Appl. Methods 2000 269 285
[12] Impulsive control systems with commutative vector fields J. Optim. Theory Appl. 1991 67 83
,[13] Global stability of an SIR epidemic model with information dependent vaccination Math. Biosci 2008 9 16
, ,[14] V. Capasso, Mathematical Structures of Epidemic Systems. Lecture Notes in Biomathematics. Springer-Verlag, Berlin (1993).
[15] A generalization of the Kermack-McKendrick deterministic epidemic model Math. Biosci 1978 43 61
,[16] Mean field games and systemic risk Commun. Math. Sci 2015 911 933
, ,[17] R. Carmona, F. Delarue, et al. Probabilistic Theory of Mean Field Games with Applications I-II. Springer, Berlin (2018).
[18] On systems of ordinary differential equations with measures as controls Differ. Integral Equ. 1991 739 765
,[19] A. Danchin, T.W.P. Ng and G. Turinici, A new transmission route for the propagation of the SARS-CoV-2 coronavirus. Preprint medRxiv: 20022939v1 (2020).
[20] R. Djidjou-Demasse, Y. Michalakis, M. Choisy, M.T. Sofonea and S. Alizon, Optimal COVID-19 epidemic control until vaccine deployment. Preprint medRxiv: 20049189v3 (2020).
[21] J. Dolbeault and G. Turinici, Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model. Preprint arXiv:2005.00049 (2020).
[22] Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases Theor. Popul. Biol 2007 301 317
, ,[23] Fatal SIR diseases and rational exemption to vaccination Math. Med. Biol 2008 337 357
, ,[24] R. Elie, E. Hubert, T. Mastrolia and D. Possamaï, Mean-field moral hazard for optimal energy demand response management. Preprint arXiv:1902.10405 (2019).
[25] R. Élie, T. Ichiba and M. Laurière, Large banking systems with default and recovery: A mean field game model. Preprint arXiv:2001.10206 (2020).
[26] Adaptive human behavior in epidemiological models Proc. Natl. Acad. Sci 2011 6306 6311
, , , , , , , , , , , ,[27] S. Ghader, J. Zhao, M. Lee, W. Zhou, G. Zhao, L. Zhang, Observed mobility behavior data reveal social distancing inertia. Preprint arXiv:2004.14748 (2020).
[28] O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in Paris-Princeton lectures on mathematical finance 2010. Springer, Berlin (2011) 205–266.
[29] Optimal control of epidemics with limited resources J. Math. Biol 2011 423 451
,[30] Large population stochastic dynamic games: Closed–loop McKean–Vlasov systems and the Nash certainty equivalence principle Commun. Inf. Syst 2006 221 252
, ,[31] An invariance principle in large population stochastic dynamic games J. Syst. Sci. Complex 2007 162 172
, ,[32] Large–population cost–coupled LQG problems with nonuniform agents: Individual–mass behavior and decentralized ε–Nash equilibria IEEE Trans. Auto. Control 2007 1560 1571
, ,[33] M. Huang, P. Caines and R. Malhamé, The Nash certainty equivalence principle and McKean–Vlasov systems: An invariance principle and entry adaptation, in 46th IEEE Conference on Decision and Control (2007) 121–126.
[34] Nash-MFG equilibrium in a SIR model with time dependent newborn vaccination Ric. Mat 2018 227 246
,[35] Global optimal vaccination in the SIR model: properties of the value function and application to cost-effectiveness analysis Math. Biosci 2015 180 197
,[36] Individual Vaccination as Nash Equilibrium in a SIR Model with Application to the 2009-2010 Influenza A (H1N1) Epidemic in France Bull. Math. Biol. 2015 1955 1984
,[37] L. Laguzet, G. Turinici and G. Yahiaoui, Equilibrium in an individual-societal SIR vaccination model in presence of discounting and finite vaccination capacity, in New Trends in Differential Equations, Control Theory and Optimization: Proceedings of the 8th Congress of Romanian Mathematicians (2016) 201–214.
[38] Jeux à champ moyen. I–Le cas stationnaire C R Math. 2006 619 625
,[39] Jeux à champ moyen. II–Horizon fini et contrôle optimal C R Math. 2006 679 684
,[40] Mean field games Jpn. J. Math 2007 229 260
,[41] S. Lenhart and J.T. Workman, Optimal control applied to biological models. CRC Press, Boca Raton (2007).
[42] Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia New Engl. J. Med 2020 1199 1207
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,[43] On the optimal control of a deterministic epidemic Adv. Appl. Prob 1974 622 635
,[44] A double epidemic model for the SARS propagation BMC Infect. Dis 2003 19
, ,[45] An introduction to the basic reproduction number in mathematical epidemiology ESAIM: Proc. Surv 2018 123 138
[46] An explicit optimal intervention policy for a deterministic epidemic model Optim. Control Appl. Methods 2008 413 428
,[47] A.S. Poznyak, Topics of functional analysis, in Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques, edited by A.S. Poznyak. Elsevier, Oxford (2008) 451–498.
[48] Effect of individual behavior on epidemic spreading in activity-driven networks Phys. Rev. E 2014 042801
, ,[49] On the existence of a threshold for preventive behavioral responses to suppress epidemic spreading Sci. Rep 2012 632
, ,[50] Optimal individual strategies for influenza vaccines with imperfect efficacy and durability of protection Math. Biosci. Eng 2018 629
,[51] Calculating QALYs, comparing QALY and DALY calculations Health Policy Plan 2006 402 408
[52] Optimal control of some simple deterministic epidemic models Oper. Res. Soc. J 1978 129 136
,[53] Necessary conditions for optimal impulsive control problems SIAM J. Control Optim. 1997 1829 1846
,[54] Metric gradient flows with state dependent functionals: The Nash-MFG equilibrium flows and their numerical schemes Nonlinear Anal 2017 163 181
[55] G. Turinici and A. Danchin, The SARS Case Study: An Alarm Clock? in Encyclopedia of Infectious Diseases. John Wiley Sons, Ltd, New Jersey (2006) 151–162.
[56] Coronavirus: scientific insights and societal aspects MMNP 2020 E2
, , , , ,[57] Statistical physics of vaccination Phys. Rep 2016 1 113
, , , , , , , ,[58] Optimal isolation policies for deterministic and stochastic epidemics Math. Biosci 1975 325 346
[59] Where now for saving lives Law Contemp. Probl 1976 5
,[60] E. Zeidler, Applied Functional Analysis: Applications to Mathematical Physics. Applied Mathematical Sciences. Springer, New York (2012).
Cité par Sources :