Contact rate epidemic control of COVID-19: an equilibrium view
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 35.

Voir la notice de l'article provenant de la source EDP Sciences

We consider the control of the COVID-19 pandemic through a standard SIR compartmental model. This control is induced by the aggregation of individuals’ decisions to limit their social interactions: when the epidemic is ongoing, an individual can diminish his/her contact rate in order to avoid getting infected, but this effort comes at a social cost. If each individual lowers his/her contact rate, the epidemic vanishes faster, but the effort cost may be high. A Mean Field Nash equilibrium at the population level is formed, resulting in a lower effective transmission rate of the virus. We prove theoretically that equilibrium exists and compute it numerically. However, this equilibrium selects a sub-optimal solution in comparison to the societal optimum (a centralized decision respected fully by all individuals), meaning that the cost of anarchy is strictly positive. We provide numerical examples and a sensitivity analysis, as well as an extension to a SEIR compartmental model to account for the relatively long latent phase of the COVID-19 disease. In all the scenario considered, the divergence between the individual and societal strategies happens both before the peak of the epidemic, due to individuals’ fears, and after, when a significant propagation is still underway.
DOI : 10.1051/mmnp/2020022

Romuald Elie 1 ; Emma Hubert 1 ; Gabriel Turinici 2

1 LAMA – UMR 8050, Université Gustave Eiffel, Champs-sur-Marne, France
2 CEREMADE – UMR 7534, Université Paris Dauphine, PSL Research University, France
@article{MMNP_2020_15_a10,
     author = {Romuald Elie and Emma Hubert and Gabriel Turinici},
     title = {Contact rate epidemic control of {COVID-19:} an equilibrium view},
     journal = {Mathematical modelling of natural phenomena},
     eid = {35},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020022/}
}
TY  - JOUR
AU  - Romuald Elie
AU  - Emma Hubert
AU  - Gabriel Turinici
TI  - Contact rate epidemic control of COVID-19: an equilibrium view
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020022/
DO  - 10.1051/mmnp/2020022
LA  - en
ID  - MMNP_2020_15_a10
ER  - 
%0 Journal Article
%A Romuald Elie
%A Emma Hubert
%A Gabriel Turinici
%T Contact rate epidemic control of COVID-19: an equilibrium view
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020022/
%R 10.1051/mmnp/2020022
%G en
%F MMNP_2020_15_a10
Romuald Elie; Emma Hubert; Gabriel Turinici. Contact rate epidemic control of COVID-19: an equilibrium view. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 35. doi : 10.1051/mmnp/2020022. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020022/

[1] A. Abakuks An optimal isolation policy for an epidemic J. Appl. Prob 1973 247 262

[2] A. Abakuks Optimal immunisation policies for epidemics Adv. Appl. Prob 1974 494 511

[3] Y. Achdou, M. Laurière Mean field type control with congestion Appl. Math. Optim 2016 393 418

[4] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, 2nd edn. Birkhäuser, Basel (2008).

[5] S. Anand, K. Hanson Disability-adjusted life years: a critical review J. Health Eco 1997 685 702

[6] R.M. Anderson and R.M. May, Infectious Diseases of Humans Dynamics and Control. Oxford University Press, Oxford (1992).

[7] R.M. Anderson, T.D. Hollingsworth and D.J. Nokes, Mathematical models of transmission and control, Vol. 2. Oxford University Press, Oxford (2009).

[8] N. Bacaer Un modéle mathématique des débuts de l’épidémie de coronavirus en France MMNP 2020 29

[9] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems Control: Foundations Applications. Birkhäuser Boston Inc., Boston, MA (1997).

[10] C.T. Bauch, D.J.D. Earn Vaccination and the theory of games Proc. Natl. Acad. Sci. USA 2004 13391 13394

[11] H. Behncke Optimal control of deterministic epidemics Optim. Control Appl. Methods 2000 269 285

[12] A. Bressan, F. Rampazzo Impulsive control systems with commutative vector fields J. Optim. Theory Appl. 1991 67 83

[13] B. Buonomo, A. D’Onofrio, D. Lacitignola. Global stability of an SIR epidemic model with information dependent vaccination Math. Biosci 2008 9 16

[14] V. Capasso, Mathematical Structures of Epidemic Systems. Lecture Notes in Biomathematics. Springer-Verlag, Berlin (1993).

[15] V. Capasso, G. Serio A generalization of the Kermack-McKendrick deterministic epidemic model Math. Biosci 1978 43 61

[16] R. Carmona, J.P. Fouque, L.H. Sun Mean field games and systemic risk Commun. Math. Sci 2015 911 933

[17] R. Carmona, F. Delarue, et al. Probabilistic Theory of Mean Field Games with Applications I-II. Springer, Berlin (2018).

[18] G. Dal Maso, F. Rampazzo On systems of ordinary differential equations with measures as controls Differ. Integral Equ. 1991 739 765

[19] A. Danchin, T.W.P. Ng and G. Turinici, A new transmission route for the propagation of the SARS-CoV-2 coronavirus. Preprint medRxiv: 20022939v1 (2020).

[20] R. Djidjou-Demasse, Y. Michalakis, M. Choisy, M.T. Sofonea and S. Alizon, Optimal COVID-19 epidemic control until vaccine deployment. Preprint medRxiv: 20049189v3 (2020).

[21] J. Dolbeault and G. Turinici, Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model. Preprint arXiv:2005.00049 (2020).

[22] A. D’Onofrio, P. Manfredi, E. Salinelli Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases Theor. Popul. Biol 2007 301 317

[23] A. D’Onofrio, P. Manfredi, E. Salinelli. Fatal SIR diseases and rational exemption to vaccination Math. Med. Biol 2008 337 357

[24] R. Elie, E. Hubert, T. Mastrolia and D. Possamaï, Mean-field moral hazard for optimal energy demand response management. Preprint arXiv:1902.10405 (2019).

[25] R. Élie, T. Ichiba and M. Laurière, Large banking systems with default and recovery: A mean field game model. Preprint arXiv:2001.10206 (2020).

[26] E.P. Fenichel, C. Castillo-Chavez, M.G. Ceddia, G. Chowell, P.A.G. Parra, G.J. Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings, M. Springbornh, L. Velazqueze, C. Villalobos Adaptive human behavior in epidemiological models Proc. Natl. Acad. Sci 2011 6306 6311

[27] S. Ghader, J. Zhao, M. Lee, W. Zhou, G. Zhao, L. Zhang, Observed mobility behavior data reveal social distancing inertia. Preprint arXiv:2004.14748 (2020).

[28] O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in Paris-Princeton lectures on mathematical finance 2010. Springer, Berlin (2011) 205–266.

[29] E. Hansen, T. Day Optimal control of epidemics with limited resources J. Math. Biol 2011 423 451

[30] M. Huang, R. Malhamé, P. Caines Large population stochastic dynamic games: Closed–loop McKean–Vlasov systems and the Nash certainty equivalence principle Commun. Inf. Syst 2006 221 252

[31] M. Huang, P. Caines, R. Malhamé An invariance principle in large population stochastic dynamic games J. Syst. Sci. Complex 2007 162 172

[32] M. Huang, P. Caines, R. Malhamé Large–population cost–coupled LQG problems with nonuniform agents: Individual–mass behavior and decentralized ε–Nash equilibria IEEE Trans. Auto. Control 2007 1560 1571

[33] M. Huang, P. Caines and R. Malhamé, The Nash certainty equivalence principle and McKean–Vlasov systems: An invariance principle and entry adaptation, in 46th IEEE Conference on Decision and Control (2007) 121–126.

[34] E. Hubert, G. Turinici Nash-MFG equilibrium in a SIR model with time dependent newborn vaccination Ric. Mat 2018 227 246

[35] L. Laguzet, G. Turinici Global optimal vaccination in the SIR model: properties of the value function and application to cost-effectiveness analysis Math. Biosci 2015 180 197

[36] L. Laguzet, G. Turinici Individual Vaccination as Nash Equilibrium in a SIR Model with Application to the 2009-2010 Influenza A (H1N1) Epidemic in France Bull. Math. Biol. 2015 1955 1984

[37] L. Laguzet, G. Turinici and G. Yahiaoui, Equilibrium in an individual-societal SIR vaccination model in presence of discounting and finite vaccination capacity, in New Trends in Differential Equations, Control Theory and Optimization: Proceedings of the 8th Congress of Romanian Mathematicians (2016) 201–214.

[38] J.-M. Lasry, P.-L. Lions Jeux à champ moyen. I–Le cas stationnaire C R Math. 2006 619 625

[39] J.-M. Lasry, P.-L. Lions Jeux à champ moyen. II–Horizon fini et contrôle optimal C R Math. 2006 679 684

[40] J.-M. Lasry, P.-L. Lions Mean field games Jpn. J. Math 2007 229 260

[41] S. Lenhart and J.T. Workman, Optimal control applied to biological models. CRC Press, Boca Raton (2007).

[42] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K.S.M. Leung, E.H.Y. Lau, J.Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T.T.Y. Lam, J.T. Wu, G.F. Gao, B.J. Cowling, B. Yang, G.M. Leung, Z. Feng Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia New Engl. J. Med 2020 1199 1207

[43] R. Morton, K.H. Wickwire On the optimal control of a deterministic epidemic Adv. Appl. Prob 1974 622 635

[44] T. Ng, G. Turinici, A. Danchin A double epidemic model for the SARS propagation BMC Infect. Dis 2003 19

[45] A. Perasso An introduction to the basic reproduction number in mathematical epidemiology ESAIM: Proc. Surv 2018 123 138

[46] A.B. Piunovskiy, D. Clancy An explicit optimal intervention policy for a deterministic epidemic model Optim. Control Appl. Methods 2008 413 428

[47] A.S. Poznyak, Topics of functional analysis, in Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques, edited by A.S. Poznyak. Elsevier, Oxford (2008) 451–498.

[48] A. Rizzo, M. Frasca, M. Porfiri Effect of individual behavior on epidemic spreading in activity-driven networks Phys. Rev. E 2014 042801

[49] F.D. Sahneh, F.N. Chowdhury, C.M. Scoglio On the existence of a threshold for preventive behavioral responses to suppress epidemic spreading Sci. Rep 2012 632

[50] F. Salvarani, G. Turinici Optimal individual strategies for influenza vaccines with imperfect efficacy and durability of protection Math. Biosci. Eng 2018 629

[51] F. Sassi Calculating QALYs, comparing QALY and DALY calculations Health Policy Plan 2006 402 408

[52] S.P. Sethi, P.W. Staats Optimal control of some simple deterministic epidemic models Oper. Res. Soc. J 1978 129 136

[53] G. Silva, R. Vinter Necessary conditions for optimal impulsive control problems SIAM J. Control Optim. 1997 1829 1846

[54] G. Turinici Metric gradient flows with state dependent functionals: The Nash-MFG equilibrium flows and their numerical schemes Nonlinear Anal 2017 163 181

[55] G. Turinici and A. Danchin, The SARS Case Study: An Alarm Clock? in Encyclopedia of Infectious Diseases. John Wiley Sons, Ltd, New Jersey (2006) 151–162.

[56] V. Volpert, M. Banerjee, A. D’Onofrio, T. Lipniacki, S. Petrovskii, V.C. Tran Coronavirus: scientific insights and societal aspects MMNP 2020 E2

[57] Z. Wang, C.T. Bauch, S. Bhattacharyya, A. D’Onofrio, P. Manfredi, M. Perc, N. Perra, M. Salathé, D. Zhao Statistical physics of vaccination Phys. Rep 2016 1 113

[58] K. Wickwire Optimal isolation policies for deterministic and stochastic epidemics Math. Biosci 1975 325 346

[59] R. Zeckhauser, D. Shepard Where now for saving lives Law Contemp. Probl 1976 5

[60] E. Zeidler, Applied Functional Analysis: Applications to Mathematical Physics. Applied Mathematical Sciences. Springer, New York (2012).

Cité par Sources :