Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 61.

Voir la notice de l'article provenant de la source EDP Sciences

A generalized form of (2+1)-dimensional Hirota bilinear (2D-HB) equation is considered herein in order to study nonlinear waves in fluids and oceans. The present goal is carried out through adopting the simplified Hirota’s method as well as ansatz approaches to retrieve a bunch of rational wave structures from multiple soliton solutions to breather, rational, and complexiton solutions. Some figures corresponding to a series of rational wave structures are provided, illustrating the dynamics of the obtained solutions. The results of the present paper help to reveal the existence of rational wave structures of different types for the 2D-HB equation.
DOI : 10.1051/mmnp/2020018

K. Hosseini 1 ; M. Mirzazadeh 2 ; M. Aligoli 3 ; M. Eslami 4 ; J.G. Liu 5

1 Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran.
2 Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, P.C. 44891-63157 Rudsar-Vajargah, Iran.
3 Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, PO Box 41335-1914 Guilan, Rasht, Iran.
4 Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.
5 College of Computer, Jiangxi University of Traditional Chinese Medicine, Jiangxi 330004, PR China.
@article{MMNP_2020_15_a72,
     author = {K. Hosseini and M. Mirzazadeh and M. Aligoli and M. Eslami and J.G. Liu},
     title = {Rational wave solutions to a generalized (2+1)-dimensional {Hirota} bilinear equation},
     journal = {Mathematical modelling of natural phenomena},
     eid = {61},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020018/}
}
TY  - JOUR
AU  - K. Hosseini
AU  - M. Mirzazadeh
AU  - M. Aligoli
AU  - M. Eslami
AU  - J.G. Liu
TI  - Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020018/
DO  - 10.1051/mmnp/2020018
LA  - en
ID  - MMNP_2020_15_a72
ER  - 
%0 Journal Article
%A K. Hosseini
%A M. Mirzazadeh
%A M. Aligoli
%A M. Eslami
%A J.G. Liu
%T Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020018/
%R 10.1051/mmnp/2020018
%G en
%F MMNP_2020_15_a72
K. Hosseini; M. Mirzazadeh; M. Aligoli; M. Eslami; J.G. Liu. Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 61. doi : 10.1051/mmnp/2020018. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020018/

[1] A.R. Adem, M. Mirzazadeh, Q. Zhou, K. Hosseini Multiple soliton solutions of the Sawada–Kotera equation with a nonvanishing boundary condition and the perturbed Korteweg de Vries equation by using the multiple exp-function scheme Adv. Math. Phys 2019 3175213

[2] X.X. Du, B. Tian, Y. Yin Lump, mixed lump-kink, breather and rogue waves for a B-type Kadomtsev–Petviashvili equation Waves Random Complex Media 2019

[3] L.L. Feng, T.T. Zhang Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation Appl. Math. Lett 2018 133 140

[4] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura Method for solving the Korteweg-deVries equation Phys. Rev. Lett 1967 1095 1097

[5] J. He, Y. Li Designable integrability of the variable coefficient nonlinear Schrödinger equations Studies Appl. Math 2011 1 15

[6] J. He, L. Wang, L. Li, K. Porsezian, R. Erdlyi Few-cycle optical rogue waves: Complex modified Korteweg-de Vries equation Phys. Rev. E 2014 062917

[7] J.S. He, E.G. Charalampidis, P.G. Kevrekidis, D.J. Frantzeskakis Rogue waves in nonlinear Schrödinger models with variable coefficients: Application to Bose–Einstein condensates Phys. Lett. A 2014 577 583

[8] J. He, S. Xu, Y. Cheng The rational solutions of the mixed nonlinear Schrödinger equation AIP Adv. 2015 017105

[9] W. Hereman, A. Nuseir Symbolic methods to construct exact solutions of nonlinear partial differential equations Math. Comput. Simul 1997 13 27

[10] W. Hereman, W. Zhuang Symbolic software for soliton theory Acta Appl. Math 1995 361 378

[11] R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge (2004).

[12] K. Hosseini, M. Aligoli, M. Mirzazadeh, M. Eslami, J.F. Gómez-Aguilar Dynamics of rational solutions in a new generalized Kadomtsev–Petviashvili equation Mod. Phys. Lett. B 2019 1950437

[13] C.C. Hu, B. Tian, H.M. Yin, C.R. Zhang, Z. Zhang Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in a fluid Comput. Math. Appl 2019 166 177

[14] Y.F. Hua, B.L. Guo, W.X. Ma, X. Lü Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves Appl. Math. Model 2019 184 198

[15] M. Inc, K. Hosseini, M. Samavat, M. Mirzazadeh, M. Eslami, M. Moradi, D. Baleanu N-wave and other solutions to the B-type Kadomtsev–Petviashvili equation Ther. Sci 2019 2027 2035

[16] J.G. Liu, Y. He Abundant lump and lump-kink solutions for the new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation Nonlinear Dyn 2018 1103 1108

[17] J.G. Liu, Q. Ye Stripe solitons and lump solutions for a generalized Kadomtsev–Petviashvili equation with variable coefficients in fluid mechanics Nonlinear Dyn 2019 23 29

[18] J.G. Liu, J.Q. Du, Z.F. Zeng, B. Nie New three-wave solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation Nonlinear Dyn 2017 655 661

[19] J.G. Liu, M. Eslami, H. Rezazadeh, M. Mirzazadeh Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev–Petviashvili equation Nonlinear Dyn 2019 1027 1033

[20] X. Lü, W.X. Ma Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation Nonlinear Dyn 2016 1217 1222

[21] W.X. Ma, Z. Zhu Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm Appl. Math. Comput 2012 11871 11879

[22] W.X. Ma, T. Huang, Y. Zhang A multiple exp-function method for nonlinear differential equations and its application Phys. Scr 2010 065003

[23] M.S. Osman, A.M. Wazwaz A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation Math. Methods Appl. Sci 2019 6277 6283

[24] M.S. Osman, M. Inc, J.G. Liu, K. Hosseini, A. Yusuf Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation Phys. Scr 2020 035229

[25] R. Pouyanmehr, K. Hosseini, R. Ansari, S.H. Alavi Different wave structures to the (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation Int. J. Appl. Comput. Math 2019 149

[26] W. Tan, H. Dai, Z. Dai, W. Zhong Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation Pramana J. Phys 2017 77

[27] A.M. Wazwaz Multiple-soliton solutions for the generalized (1+1)-dimensional and the generalized (2+1)-dimensional Ito equations Appl. Math. Comput 2008 840 849

[28] A.M. Wazwaz Multiple-soliton solutions for extended shallow water wave equations Studies Math. Sci 2010 21 29

[29] A.M. Wazwaz Two wave mode higher-order modified KdV equations: Essential conditions for multiple soliton solutions to exist Int. J. Num. Methods Heat Fluid Flow 2017 2223 2230

[30] A.M. Wazwaz Multiple complex and multiple real soliton solutions for the integrable sine-Gordon equation Optik 2018 622 627

[31] A.M. Wazwaz Multiple complex soliton solutions for the integrable KdV, fifth-order Lax, modified KdV, Burgers, and Sharma–Tasso–Olver equations Chin. J. Phys 2019 372 378

[32] A.M. Wazwaz Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations Appl. Math. Lett 2019 1 7

[33] A.M. Wazwaz, L. Kaur New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions Nonlinear Dyn 2019 83 94

[34] R. Zhang, S. Bilige, T. Fang, T. Chaolu New periodic wave, cross-kink wave and the interaction phenomenon for the Jimbo–Miwa-like equation Comput. Math. Appl 2019 754 764

[35] Y. Zhou, W.X. Ma Complexiton solutions to soliton equations by the Hirota method J. Math. Phys 2017 101511

Cité par Sources :