Voir la notice de l'article provenant de la source EDP Sciences
K. Hosseini 1 ; M. Mirzazadeh 2 ; M. Aligoli 3 ; M. Eslami 4 ; J.G. Liu 5
@article{MMNP_2020_15_a72, author = {K. Hosseini and M. Mirzazadeh and M. Aligoli and M. Eslami and J.G. Liu}, title = {Rational wave solutions to a generalized (2+1)-dimensional {Hirota} bilinear equation}, journal = {Mathematical modelling of natural phenomena}, eid = {61}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020018/} }
TY - JOUR AU - K. Hosseini AU - M. Mirzazadeh AU - M. Aligoli AU - M. Eslami AU - J.G. Liu TI - Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020018/ DO - 10.1051/mmnp/2020018 LA - en ID - MMNP_2020_15_a72 ER -
%0 Journal Article %A K. Hosseini %A M. Mirzazadeh %A M. Aligoli %A M. Eslami %A J.G. Liu %T Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020018/ %R 10.1051/mmnp/2020018 %G en %F MMNP_2020_15_a72
K. Hosseini; M. Mirzazadeh; M. Aligoli; M. Eslami; J.G. Liu. Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 61. doi : 10.1051/mmnp/2020018. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020018/
[1] Multiple soliton solutions of the Sawada–Kotera equation with a nonvanishing boundary condition and the perturbed Korteweg de Vries equation by using the multiple exp-function scheme Adv. Math. Phys 2019 3175213
, , ,[2] Lump, mixed lump-kink, breather and rogue waves for a B-type Kadomtsev–Petviashvili equation Waves Random Complex Media 2019
, ,[3] Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation Appl. Math. Lett 2018 133 140
,[4] Method for solving the Korteweg-deVries equation Phys. Rev. Lett 1967 1095 1097
, , ,[5] Designable integrability of the variable coefficient nonlinear Schrödinger equations Studies Appl. Math 2011 1 15
,[6] Few-cycle optical rogue waves: Complex modified Korteweg-de Vries equation Phys. Rev. E 2014 062917
, , , ,[7] Rogue waves in nonlinear Schrödinger models with variable coefficients: Application to Bose–Einstein condensates Phys. Lett. A 2014 577 583
, , ,[8] The rational solutions of the mixed nonlinear Schrödinger equation AIP Adv. 2015 017105
, ,[9] Symbolic methods to construct exact solutions of nonlinear partial differential equations Math. Comput. Simul 1997 13 27
,[10] Symbolic software for soliton theory Acta Appl. Math 1995 361 378
,[11] R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge (2004).
[12] Dynamics of rational solutions in a new generalized Kadomtsev–Petviashvili equation Mod. Phys. Lett. B 2019 1950437
, , , ,[13] Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in a fluid Comput. Math. Appl 2019 166 177
, , , ,[14] Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves Appl. Math. Model 2019 184 198
, , ,[15] N-wave and other solutions to the B-type Kadomtsev–Petviashvili equation Ther. Sci 2019 2027 2035
, , , , , ,[16] Abundant lump and lump-kink solutions for the new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation Nonlinear Dyn 2018 1103 1108
,[17] Stripe solitons and lump solutions for a generalized Kadomtsev–Petviashvili equation with variable coefficients in fluid mechanics Nonlinear Dyn 2019 23 29
,[18] New three-wave solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation Nonlinear Dyn 2017 655 661
, , ,[19] Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev–Petviashvili equation Nonlinear Dyn 2019 1027 1033
, , ,[20] Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation Nonlinear Dyn 2016 1217 1222
,[21] Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm Appl. Math. Comput 2012 11871 11879
,[22] A multiple exp-function method for nonlinear differential equations and its application Phys. Scr 2010 065003
, ,[23] A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation Math. Methods Appl. Sci 2019 6277 6283
,[24] Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation Phys. Scr 2020 035229
, , , ,[25] Different wave structures to the (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation Int. J. Appl. Comput. Math 2019 149
, , ,[26] Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation Pramana J. Phys 2017 77
, , ,[27] Multiple-soliton solutions for the generalized (1+1)-dimensional and the generalized (2+1)-dimensional Ito equations Appl. Math. Comput 2008 840 849
[28] Multiple-soliton solutions for extended shallow water wave equations Studies Math. Sci 2010 21 29
[29] Two wave mode higher-order modified KdV equations: Essential conditions for multiple soliton solutions to exist Int. J. Num. Methods Heat Fluid Flow 2017 2223 2230
[30] Multiple complex and multiple real soliton solutions for the integrable sine-Gordon equation Optik 2018 622 627
[31] Multiple complex soliton solutions for the integrable KdV, fifth-order Lax, modified KdV, Burgers, and Sharma–Tasso–Olver equations Chin. J. Phys 2019 372 378
[32] Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations Appl. Math. Lett 2019 1 7
[33] New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions Nonlinear Dyn 2019 83 94
,[34] New periodic wave, cross-kink wave and the interaction phenomenon for the Jimbo–Miwa-like equation Comput. Math. Appl 2019 754 764
, , ,[35] Complexiton solutions to soliton equations by the Hirota method J. Math. Phys 2017 101511
,Cité par Sources :