Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2020_15_a56, author = {Michael Ruderman}, title = {On stability of linear dynamic systems with hysteresis feedback}, journal = {Mathematical modelling of natural phenomena}, eid = {52}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020014}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020014/} }
TY - JOUR AU - Michael Ruderman TI - On stability of linear dynamic systems with hysteresis feedback JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020014/ DO - 10.1051/mmnp/2020014 LA - en ID - MMNP_2020_15_a56 ER -
Michael Ruderman. On stability of linear dynamic systems with hysteresis feedback. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 52. doi : 10.1051/mmnp/2020014. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020014/
[1] Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems Int. J. Non-linear Mech 2004 1721 1735
, , ,[2] Systems with counterclockwise input-output dynamics IEEE Transa. Auto. Contr 2006 1130 1143
[3] Absolute stability of control systems having one hysteresis-like nonlinearity Avtomatika i Telemekhanika 1979 5 12
,[4] G. Bertotti and I.D. Mayergoyz. The science of hysteresis, Vol. 1–3, Gulf Professional Publishing, Houston, Texas, USA, (2006).
[5] Frequency-domain instability criteria for time-varying and nonlinear systems Proc. IEEE 1967 604 619
,[6] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer, Berlin (1996).
[7] A review of some plasticity and viscoplasticity constitutive theories Int. J. Plastic 2008 1642 1693
[8] Mathematical model for dynamic hysteresis loops Int. J. Eng. Sci 1971 435 450
,[9] A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials Int. J. Eng. Sci 1986 897 919
,[10] Solid friction damping of mechanical vibrations AIAA J 1976 1675 1682
[11] Hysteresis in piezoelectric and ferroelectric materials Sci. Hysteres 2006 337 465
[12] Modelling and analysis of nonlinear stiffness, hysteresis and friction in harmonic drive gears Int. J. Model. Simul 2008 329 336
,[13] Vibrations of the elasto-plastic pendulum Int. J Non-linear Mech 2003 111 122
,[14] Modeling piezoelectric stack actuators for control of micromanipulation IEEE Control Syst 1997 69 79
,[15] Passivity-based stability and control of hysteresis in smart actuators IEEE Trans. Control Syst. Tech 2001 5 16
, ,[16] Coefficient of restitution interpreted as damping in vibroimpact J. Appl. Mech 1975 440 445
,[17] H.K. Khalil, Nonlinear Systems, 3rd edn., Prentice Hall, Prentice (2002).
[18] A study of the relationships governing starting rolling friction Wear 1984 281 290
,[19] M.A. Krasnosel’skii and A.V. Pokrovskii, Systems with Hysteresis. Springer, Berlin (1989).
[20] P. Krejci, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gattötoscho, Academy of Sciences of the Czech Republic Tokyo, Czech Republic Tokyo (1996).
[21] B.J. Lazan, Damping of materials and members in structural mechanics, Vol. 214, Pergamon press Oxford, Oxford (1968).
[22] On the theory of stability of control systems Appl. Math. Mech 1944 246 248
,[23] The general problem of motion stability Annal. Math. Studies 1892
[24] Semilinear duhem model for rate-independent and rate-dependent hysteresis IEEE Trans. Automat. Control 2005 631 645
,[25] Y. Orlov, Theory of optimal systems with generalized controls. Moscow, Nauka (1988).
[26] Absolute stability analysis of linear systems with duhem hysteresis operator Automatica 2014 1860 1866
,[27] A KYP lemma and invariance principle for systems with multiple hysteresis non-linearities Int. J. Control 2001 1140 1157
, ,[28] On absolute stability of non-linear automatic control systems Automatika i Telemekhanika 1961 961 979
[29] Über die magnetische nachwirkung Z. Phys 1935 277 302
[30] Sensorless torsion control of elastic joint robots with hysteresis and friction IEEE Trans. Ind. Electron 2015 1889 1899
,[31] Use of Prandtl-Ishlinskii hysteresis operators for coulomb friction modeling with presliding In J. Phys. Conf. Ser. 2017 012013
,[32] A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element Bell Sys. Techn. J 1964 1601 1608
[33] S. Sastry, Nonlinear systems: analysis, stability, and control. Vol. 10. Springer, Berlin (2013).
[34] J.J. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall Prentice (1991).
[35] Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction Phys. Rev. Lett 2004 134301
, , ,[36] A. Visintin, Differential models of hysteresis. Springer, Berlin (1994).
[37] Dissipative dynamical systems Euro. J. Control 2007 134 151
[38] Method of matrix inequalities in the theory of stability of nonlinear controlled systems. iii. absolute stability of systems with hysteresis nonlinearities Automat. Remote Control 1965 753 763
[39] On the input-output stability of time-varying nonlinear feedback systems–part ii: Conditions involving circles in the frequency plane and sector nonlinearities IEEE Trans. Automat. Control 1966 465 476
Cité par Sources :