On stability of linear dynamic systems with hysteresis feedback
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 52.

Voir la notice de l'article provenant de la source EDP Sciences

The stability of linear dynamic systems with hysteresis in feedback is considered. While the absolute stability for memoryless nonlinearities (known as Lure’s problem) can be proved by the well-known circle criterion, the multivalued rate-independent hysteresis poses significant challenges for feedback systems, especially for proof of convergence to an equilibrium state correspondingly set. The dissipative behavior of clockwise input-output hysteresis is considered with two boundary cases of energy losses at reversal cycles. For upper boundary cases of maximal (parallelogram shape) hysteresis loop, an equivalent transformation of the closed-loop system is provided. This allows for the application of the circle criterion of absolute stability. Invariant sets as a consequence of hysteresis are discussed. Several numerical examples are demonstrated, including a feedback-controlled double-mass harmonic oscillator with hysteresis and one stable and one unstable poles configuration.
DOI : 10.1051/mmnp/2020014

Michael Ruderman 1

1 Faculty of Engineering and Science, University of Agder, p.b. 422, Kristiansand 4604, Norway.
@article{MMNP_2020_15_a56,
     author = {Michael Ruderman},
     title = {On stability of linear dynamic systems with hysteresis feedback},
     journal = {Mathematical modelling of natural phenomena},
     eid = {52},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020014/}
}
TY  - JOUR
AU  - Michael Ruderman
TI  - On stability of linear dynamic systems with hysteresis feedback
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020014/
DO  - 10.1051/mmnp/2020014
LA  - en
ID  - MMNP_2020_15_a56
ER  - 
%0 Journal Article
%A Michael Ruderman
%T On stability of linear dynamic systems with hysteresis feedback
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020014/
%R 10.1051/mmnp/2020014
%G en
%F MMNP_2020_15_a56
Michael Ruderman. On stability of linear dynamic systems with hysteresis feedback. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 52. doi : 10.1051/mmnp/2020014. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020014/

[1] F. Al-Bender, W. Symens, J. Swevers, H. Van Brussel Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems Int. J. Non-linear Mech 2004 1721 1735

[2] D. Angeli Systems with counterclockwise input-output dynamics IEEE Transa. Auto. Contr 2006 1130 1143

[3] N.E. Barabanov, V.A. Yakubovich Absolute stability of control systems having one hysteresis-like nonlinearity Avtomatika i Telemekhanika 1979 5 12

[4] G. Bertotti and I.D. Mayergoyz. The science of hysteresis, Vol. 1–3, Gulf Professional Publishing, Houston, Texas, USA, (2006).

[5] R.W. Brockett, H.B. Lee Frequency-domain instability criteria for time-varying and nonlinear systems Proc. IEEE 1967 604 619

[6] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer, Berlin (1996).

[7] J.L. Chaboche A review of some plasticity and viscoplasticity constitutive theories Int. J. Plastic 2008 1642 1693

[8] L.O. Chua, K.A. Stromsmoe Mathematical model for dynamic hysteresis loops Int. J. Eng. Sci 1971 435 450

[9] B.D. Coleman, M.L. Hodgdon A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials Int. J. Eng. Sci 1986 897 919

[10] P.R. Dahl Solid friction damping of mechanical vibrations AIAA J 1976 1675 1682

[11] D. Damjanovic Hysteresis in piezoelectric and ferroelectric materials Sci. Hysteres 2006 337 465

[12] R. Dhaouadi, F.H. Ghorbel Modelling and analysis of nonlinear stiffness, hysteresis and friction in harmonic drive gears Int. J. Model. Simul 2008 329 336

[13] J. Gerstmayr, H. Irschik Vibrations of the elasto-plastic pendulum Int. J Non-linear Mech 2003 111 122

[14] M. Goldfarb, N. Celanovic Modeling piezoelectric stack actuators for control of micromanipulation IEEE Control Syst 1997 69 79

[15] R.B. Gorbet, K.A. Morris, D.W.L. Wang Passivity-based stability and control of hysteresis in smart actuators IEEE Trans. Control Syst. Tech 2001 5 16

[16] K.H. Hunt, F.R.E. Crossley Coefficient of restitution interpreted as damping in vibroimpact J. Appl. Mech 1975 440 445

[17] H.K. Khalil, Nonlinear Systems, 3rd edn., Prentice Hall, Prentice (2002).

[18] T. Koizumi, H. Shibazaki A study of the relationships governing starting rolling friction Wear 1984 281 290

[19] M.A. Krasnosel’skii and A.V. Pokrovskii, Systems with Hysteresis. Springer, Berlin (1989).

[20] P. Krejci, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gattötoscho, Academy of Sciences of the Czech Republic Tokyo, Czech Republic Tokyo (1996).

[21] B.J. Lazan, Damping of materials and members in structural mechanics, Vol. 214, Pergamon press Oxford, Oxford (1968).

[22] A.I. Lure, V.N. Postnikov On the theory of stability of control systems Appl. Math. Mech 1944 246 248

[23] A.M. Lyapunov The general problem of motion stability Annal. Math. Studies 1892

[24] J.H. Oh, D.S. Bernstein Semilinear duhem model for rate-independent and rate-dependent hysteresis IEEE Trans. Automat. Control 2005 631 645

[25] Y. Orlov, Theory of optimal systems with generalized controls. Moscow, Nauka (1988).

[26] R. Ouyang, B. Jayawardhana Absolute stability analysis of linear systems with duhem hysteresis operator Automatica 2014 1860 1866

[27] T. Paré, A. Hassibi, J. How A KYP lemma and invariance principle for systems with multiple hysteresis non-linearities Int. J. Control 2001 1140 1157

[28] V.M. Popov On absolute stability of non-linear automatic control systems Automatika i Telemekhanika 1961 961 979

[29] F. Preisach Über die magnetische nachwirkung Z. Phys 1935 277 302

[30] M. Ruderman, M. Iwasaki Sensorless torsion control of elastic joint robots with hysteresis and friction IEEE Trans. Ind. Electron 2015 1889 1899

[31] M. Ruderman, D. Rachinskii Use of Prandtl-Ishlinskii hysteresis operators for coulomb friction modeling with presliding In J. Phys. Conf. Ser. 2017 012013

[32] I.W. Sandberg A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element Bell Sys. Techn. J 1964 1601 1608

[33] S. Sastry, Nonlinear systems: analysis, stability, and control. Vol. 10. Springer, Berlin (2013).

[34] J.J. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall Prentice (1991).

[35] A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction Phys. Rev. Lett 2004 134301

[36] A. Visintin, Differential models of hysteresis. Springer, Berlin (1994).

[37] J.C. Willems Dissipative dynamical systems Euro. J. Control 2007 134 151

[38] V.A. Yakubovich Method of matrix inequalities in the theory of stability of nonlinear controlled systems. iii. absolute stability of systems with hysteresis nonlinearities Automat. Remote Control 1965 753 763

[39] G. Zames On the input-output stability of time-varying nonlinear feedback systems–part ii: Conditions involving circles in the frequency plane and sector nonlinearities IEEE Trans. Automat. Control 1966 465 476

Cité par Sources :