Immuno-epidemiological model of two-stage epidemic growth
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 27.

Voir la notice de l'article provenant de la source EDP Sciences

Epidemiological data on seasonal influenza show that the growth rate of the number of infected individuals can increase passing from one exponential growth rate to another one with a larger exponent. Such behavior is not described by conventional epidemiological models. In this work an immuno-epidemiological model is proposed in order to describe this two-stage growth. It takes into account that the growth in the number of infected individuals increases the initial viral load and provides a passage from the first stage of epidemic where only people with weak immune response are infected to the second stage where people with strong immune response are also infected. This scenario may be viewed as an increase of the effective number of susceptible increasing the effective growth rate of infected.
DOI : 10.1051/mmnp/2020012

Malay Banerjee 1 ; Alexey Tokarev 2 ; Vitaly Volpert 2, 3, 4

1 Department of Mathematics & Statistics, IIT Kanpur, Kanpur 208016, India.
2 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia.
3 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France.
4 INRIA Team Dracula, INRIA Lyon La Doua, 69603 Villeurbanne, France.
@article{MMNP_2020_15_a3,
     author = {Malay Banerjee and Alexey Tokarev and Vitaly Volpert},
     title = {Immuno-epidemiological model of two-stage epidemic growth},
     journal = {Mathematical modelling of natural phenomena},
     eid = {27},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2020012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020012/}
}
TY  - JOUR
AU  - Malay Banerjee
AU  - Alexey Tokarev
AU  - Vitaly Volpert
TI  - Immuno-epidemiological model of two-stage epidemic growth
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020012/
DO  - 10.1051/mmnp/2020012
LA  - en
ID  - MMNP_2020_15_a3
ER  - 
%0 Journal Article
%A Malay Banerjee
%A Alexey Tokarev
%A Vitaly Volpert
%T Immuno-epidemiological model of two-stage epidemic growth
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020012/
%R 10.1051/mmnp/2020012
%G en
%F MMNP_2020_15_a3
Malay Banerjee; Alexey Tokarev; Vitaly Volpert. Immuno-epidemiological model of two-stage epidemic growth. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 27. doi : 10.1051/mmnp/2020012. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020012/

[1] S. Bernard-Stoecklin, C. Campese, Y. Savitch Influenza activity in France, season 2018–2019 BEH 2019 552 563

[2] G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, V. Volpert Modelling the dynamics of virus infection and immune response in space and time Int. J. Parallel Emerg. Distrib. Syst 2019 341 355

[3] L. Cai, N. Tuncer, M. Martcheva How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria Math. Methods Appl. Sci 2017 6424 6450

[4] A. Gandolfi, A. Pugliese, C. Sinisgalli Epidemic dynamics and host immune response: a nested approach J. Math. Biol 2015 399 435

[5] Influenza season 2019–2020: early situation assessment. World Health Organization, (2019).

[6] M. Kochanczyk, F. Grabowski and T. Lipniacki, Impact of the contact and exclusion rates on the spread of COVID-19 pandemic. Preprint medRxiv (2020). https://doi.org/10.1101/2020.03.13.20035485.

[7] A. Lachmann, Correcting under-reported COVID-19 case numbers. Preprint medRxiv (2020). https://doi.org/10.1101/2020.03.14.20036178.

[8] G. Li, Y. Fan, Y. Lai, T. Han, Z. Li, P. Zhou, P. Pan, W. Wang, D. Hu, X. Liu, Q. Zhang, J. Wu Coronavirus infections and immune responses J. Med. Virol 2020 424 432

[9] Z. Liu, P. Magal, O. Seydi, G. Webb Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions Biology 2020 50

[10] S. Lukens, J. Depasse, R. Rosenfeld, E. Ghedin, E. Mochan, S.T. Brown, J. Grefenstette, D.S. Burke, D. Swigon, G. Clermont A large-scale immuno-epidemiological simulation of influenza A epidemics BMC Public Health 2014 1019

[11] I. Marois, A. Cloutier, E. Garneau, M.V. Richter Initial infectious dose dictates the innate, adaptive, and memory responses to influenza in the respiratory tract J. Leukoc. Biol 2012 107 121

[12] J. Murray, Mathematical Biology, Vol. 1. Springer-Verlag, Heidelberg (2002).

[13] A.C. Paulo, M. Correia-Neves, T. Domingos, A.G. Murta, J. Pedrosa Influenza infectious dose may explain the high mortality of the second and third wave of 1918–1919 influenza pandemic PLoS ONE 2010 e11655

[14] A. Pugliese, A. Gandolfi A simple model of pathogen-immune dynamics including specific and non-specific immunity Math. Biosci 2008 73 80

[15] Resultat de la surveillance de la grippe et du syndrome grippal en Belgique.

[16] Summary of UK surveillance of influenza and other seasonal respiratory illnesses. 29 August 2019 – Week 35 report (up to week 34 data). PHE National Influenza Report (2020).

[17] C.H. Van Dorp, M. Van Boven, R.J. De Boer Immuno-epidemiological modeling of HIV-1 predicts high heritability of the set-point virus load, while selection for CTL escape dominates virulence evolution PLOS Comput. Biol 2014 e1003899

[18] V. Volpert, M. Banerjee, S. Petrovskii On a quarantine model of coronavirus infection and data analysis MMNP 2020 24

[19] Worldometer, Available from: https://www.worldometers.info/coronavirus/ (2020).

Cité par Sources :