Voir la notice de l'article provenant de la source EDP Sciences
Olaf Klein 1 ; Daniele Davino 2 ; Ciro Visone 3
@article{MMNP_2020_15_a57, author = {Olaf Klein and Daniele Davino and Ciro Visone}, title = {On forward and inverse uncertainty quantification for models involving hysteresis operators}, journal = {Mathematical modelling of natural phenomena}, eid = {53}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020009}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020009/} }
TY - JOUR AU - Olaf Klein AU - Daniele Davino AU - Ciro Visone TI - On forward and inverse uncertainty quantification for models involving hysteresis operators JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020009/ DO - 10.1051/mmnp/2020009 LA - en ID - MMNP_2020_15_a57 ER -
%0 Journal Article %A Olaf Klein %A Daniele Davino %A Ciro Visone %T On forward and inverse uncertainty quantification for models involving hysteresis operators %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020009/ %R 10.1051/mmnp/2020009 %G en %F MMNP_2020_15_a57
Olaf Klein; Daniele Davino; Ciro Visone. On forward and inverse uncertainty quantification for models involving hysteresis operators. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 53. doi : 10.1051/mmnp/2020009. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020009/
[1] The generalized Prandtl-Ishlinskii model: relation with the Preisach nonlinearity and inverse compensation error 2014 American Control Conference (ACC) June 4 -6, 2014. Portland, Oregon, USA 2014
, , ,[2] Comparison of Prandtl–Ishlinskii and Preisach modeling for smart devices applications Phys. B: Condens. Matter 2016 155 159
, , ,[3] M. Brokate and J. Sprekels, Hysteresis and phase transitions. Springer, New York (1996).
[4] Fully coupled modeling of magneto-mechanical hysteresis through ‘thermodynamic’ compatibility Smart Mater. Struct. 2013 9
, ,[5] Rate-independent memory in magneto-elastic materials Discrete Continuous Dyn. Syst. Ser. S 2015 649 691
,[6] Outwards pointing hysteresis operators and asymptotic behaviour of evolution equations Nonlinear Anal. Real World Appl. 2003 755 785
,[7] Asymptotic behaviour of evolution equations involving outwards pointing hysteresis operators Phys. B 2004 53 58
,[8] M. Krasnosel’skiǐ and A. Pokrovskii, Systems with Hysteresis. Russian edition: Nauka, Moscow, 1983. Springer-Verlag, Heidelberg (1989).
[9] P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Vol. 8 of Gakuto Int. Series Math. Sci. Appl. Gakkōtosho, Tokyo (1996).
[10] W. Liu, A Geostatistical Approach toward Shear Wave Velocity Modeling and Uncertainty Quantification in Seismic Hazard. Dissertations, Clemson University (2018).
[11] Stochastic nonparametric models of uncertain hysteretic oscillators AIAA J. 2006 2319 2330
, , ,[12] I.D. Mayergoyz, Mathematical Models of Hysteresis and their Applications. 2nd edn. Elsevier, Amsterdam (2003).
[13] A-posteriori identifiability of the maxwell slip model of hysteresis IFAC Proc. 2011 10788 10793
,[14] R.C. Smith, Uncertainty quantification: theory, implementation, and applications, Vol. 12 of Computational Science Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2014).
[15] T.J. Sullivan, Introduction to uncertainty quantification, Vol. 63 of Texts in Applied Mathematics. Springer, Cham (2015).
[16] A hysteretic multiscale formulation for validating computational models of heterogeneous structures J. Strain Anal. Eng. Des. 2015 46 62
,[17] A. Visintin, Differential Models of Hysteresis, Vol. 111 of Applied Mathematical Sciences. Springer, New York (1994).
[18] Exact invertible hysteresis models based on play operators Phys. B: Condens. Matter 2004 148 152
,[19] Stochastic responses of multi-degree-of-freedom uncertain hysteretic systems 2011
Cité par Sources :