Voir la notice de l'article provenant de la source EDP Sciences
Maciej Leszczyński 1 ; Urszula Ledzewicz 1, 2 ; Heinz Schättler 3
@article{MMNP_2020_15_a43, author = {Maciej Leszczy\'nski and Urszula Ledzewicz and Heinz Sch\"attler}, title = {Optimal control for a mathematical model for chemotherapy with pharmacometrics}, journal = {Mathematical modelling of natural phenomena}, eid = {69}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2020008}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020008/} }
TY - JOUR AU - Maciej Leszczyński AU - Urszula Ledzewicz AU - Heinz Schättler TI - Optimal control for a mathematical model for chemotherapy with pharmacometrics JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020008/ DO - 10.1051/mmnp/2020008 LA - en ID - MMNP_2020_15_a43 ER -
%0 Journal Article %A Maciej Leszczyński %A Urszula Ledzewicz %A Heinz Schättler %T Optimal control for a mathematical model for chemotherapy with pharmacometrics %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020008/ %R 10.1051/mmnp/2020008 %G en %F MMNP_2020_15_a43
Maciej Leszczyński; Urszula Ledzewicz; Heinz Schättler. Optimal control for a mathematical model for chemotherapy with pharmacometrics. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 69. doi : 10.1051/mmnp/2020008. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/2020008/
[1] B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, in In Vol. 40 of Mathématiques Applications. Springer, Paris (2003).
[2] A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control. American Institute of Mathematical Sciences, California (2007).
[3] A.E. Bryson, Jr. and Y.C. Ho, Applied Optimal Control, Revised Printing. Hemisphere Publishing Company, New York (1975).
[4] C.S. Chou and A. Friedman, Introduction to Mathematical Biology - Modeling, Analysis and Simulation. Springer Verlag (2016).
[5] M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy. Vol. 30 of Lecture Notes in Biomathematics, Springer, Berlin (1979).
[6] Optimal control problems for the Gompertz model under the Norton-Simon hypothesis in chemotherapy Discr. Cont. Dyn. Syst. Ser. B 2019 2577 2612
,[7] Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy Cancer Res 1999 4770 4775
, , ,[8] A. Källén, Computational Pharmacokinetics. Chapman and Hall, CRC, London (2007).
[9] H.K. Khalil, Nonlinear Systems, 3rded. Prentice Hall, Upper Saddle River, NJ (2002).
[10] An optimal control problem related to leukemia chemotherapy Sci. Bull. Silesian Tech. Univ 1983 120 130
,[11] U. Ledzewicz, H. Maurer and H. Schättler, Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics, in Recent Advances in Optimization and its Applications in Engineering, edited by M. Diehl, F. Glineur, E. Jarlebring and W. Michiels. Springer, Heidelberg (2010) 267–276.
[12] Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy Math. Biosci. Eng 2011 3-7 323
, ,[13] Optimal combined radio- and anti-angiogenic cancer therapy J. Optim. Theory Appl 2019 321 340
, ,[14] Dynamical systems properties of a mathematical model for the treatment of CML Appl. Sci 2016 291
,[15] Optimal control applied to a generalized Michaelis-Menten model of CML therapy Dicr. Cont. Dyn. Syst. Ser. B 2018 331 346
,[16] Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy J. Optim. Theory Appl 2002 609 637
,[17] The influence of PK/PD on the structure of optimal control in cancer chemotherapy models Math. Biosci. Eng 2005 561 578
,[18] Antiangiogenic therapy in cancer treatment as an optimal control problem SIAM J. Control Optim 2007 1052 1079
,[19] Controlling a model for bone marrow dynamics in cancer chemotherapy Math. Biosci. Eng 2004 95 110
,[20] Singular controls and chattering arcs in optimal control problems arising in biomedicine Control Cybern 2009 1501 1523
,[21] Multi-input optimal control problems for combined tumor anti-angiogenic and radiotherapy treatments J. Optim. Theory Appl 2012 195 224
,[22] M. Leszczyński, The Role of Pharmacometrics in Optimal Controls Problems for Mathematical Models of Cancer Therapies. Ph.D. thesis, Lodz University of Technology, Lodz, Poland (2019).
[23] Sufficient conditions for optimality for a mathematical model of drug treatment with pharmacodynamics Opuscula Math 2017 403 419
, , ,[24] Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics Discr. Cont. Dyn. Syst. Ser. B 2019 2315 2334
, ,[25] P. Macheras and A. Iliadin, Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics, in Vol. 30 of Interdisciplinary Applied Mathematics, 2nd ed. Springer, New York (2016).
[26] R. Martin and K.L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy. World Scientific Press, Singapore (1994).
[27] On optimal delivery of combination therapy for tumors Math. Biosci 2009 13 26
, , ,[28] A mathematical tumor model with immune resistance and drug therapy: an optimal control approach J. Theor. Med 2001 79 100
,[29] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes. Macmillan, New York (1964).
[30] M. Rowland and T.N. Tozer, Clinical Pharmacokinetics and Pharmacodynamics, Wolters Kluwer Lippicott, Philadelphia (1995).
[31] H. Schättler and U. Ledzewicz, Geometric Optimal Control, Interdisciplinary Applied Mathematics, Vol. 38, Springer, New York (2012).
[32] H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies, Interdisciplinary Applied Mathematics, Vol. 42, Springer, New York (2015).
[33] Sufficient conditions for strong locak optimality in optimal control problems with L2 -type objectives and control constraints Dicr. Cont. Dyn. Syst. Ser. B 2014 2657 2679
, ,[34] Closed-loop subcutaneous insulin infusion algorithm with a short-acting insulin analog for long-term clinical application of a wearable artificial endocrine pancreas Front. Med. Biol. Eng 1997 197 211
, , , , , , ,[35] On mathematical modeling of critical variables in cancer treatment (goals: better understanding of the past and better planning in the future) Bull. Math. Biol 1986 253 278
[36] G.W. Swan, Applications of Optimal Control Theory in Medicine, Marcel Dekker, New York (1984).
[37] General applications of optimal control theory in cancer chemotherapy IMA J. Math. Appl. Med. Biol 1988 303 316
[38] Role of optimal control in cancer chemotherapy Math. Biosci 1990 237 284
[39] Optimal treatment protocols in leukemia - modelling the proliferation cycle Proc. of the 12th IMACS World Congress, Paris 4 1988 170 172
[40] Cell cycle as an object of control J. Biol. Syst 1995 41 54
Cité par Sources :